Predictions of the Total Crack Length in Solidification Cracking Through LSBoost

Abstract

The longitudinal Varestraint test is the most widely used technique to quantify the weld solidification cracking susceptibility, which provides the total crack length, TCL, as an indicator. But experimental work requires a significant amount of time and resource. Data-driven approaches can serve as alternatives to estimate the TCL through influencing factors, including metallurgical factors, welding conditions, and test parameters. We develop the least-squares boosting model to predict the TCL, a solidification cracking susceptibility indicator, based on the alloy composition, welding parameters, and applied strain. The model manifests high accuracy and stability, and applies to a wide range of stainless steels. It serves as a fast, robust, and low-cost tool for the assessment of solidification cracking susceptibility.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    G. Agarwal, A. Kumar, I.M. Richardson, and M.J.M. Hermans, Mater. Design, 2019, 183, p. 108104.

    CAS  Google Scholar 

  2. 2.

    J. Yoo, B. Kim, Y. Park, and C. Lee, Journal of Materials Science, 50(1), 2015, pp. 279–286.

    CAS  Google Scholar 

  3. 3.

    J. Schwartz, C.C. Koch, Y. Zhang, and X. Liu: U.S. Patent US9773962B2, September 26, 2017.

  4. 4.

    Y. Zhang, S. Johnson, G. Naderi, M. Chaubal, A. Hunt, and J. Schwartz, Superconductor Science and Technology, 2016, 29(9), 095012.

    Google Scholar 

  5. 5.

    Y. Zhang, C.C. Koch, and J. Schwartz, Superconductor Science and Technology, 2016, 29(12), 125005.

    Google Scholar 

  6. 6.

    Y. Zhang, C.C. Koch, and J. Schwartz, Superconductor Science and Technology, 2014, 27(5), 055016.

    Google Scholar 

  7. 7.

    V. Shankar, T.P.S. Gill, S.L. Mannan, and S. Sundaresan, Sadhana, 2003, 28(3–4), pp. 359–382.

    CAS  Google Scholar 

  8. 8.

    G.J. Ram, T.K. Mitra, V. Shankar, and S. Sundaresan, Journal of Materials Processing Technology, 2003, 142(1), pp. 174–181.

    Google Scholar 

  9. 9.

    E. Cicală, G. Duffet, H. Andrzejewski, D. Grevey, and S. Ignat, Materials Science and Engineering: A, 2005, 395(1–2), pp. 1–9.

    Google Scholar 

  10. 10.

    V.S.R. Murti, P.D. Srinivas, G.H.D. Banadeki, and K.S. Raju, Journal of Materials Processing Technology, 1993, 37(1–4), pp. 723–729.

    Google Scholar 

  11. 11.

    D.G. Eskin and L. Katgerman, Progress in Materials Science, 2004, 49(5), pp. 629–711.

    CAS  Google Scholar 

  12. 12.

    T. Soysal and S. Kou, Acta Materialia, 2018, 143, pp. 181–197.

    CAS  Google Scholar 

  13. 13.

    A. Niel, C. Bordreuil, F. Deschaux-Beaume, and G. Fras, Science and Technology of Welding and Joining, 2013, 18(2), pp. 154–160.

    CAS  Google Scholar 

  14. 14.

    B.G. Thomas, ASM Handbook, 2009, 22, pp. 362–374.

    Google Scholar 

  15. 15.

    Y. Zhang and X. Xu, International Journal of Thermophysics, 2020, 41, 149.

    CAS  Google Scholar 

  16. 16.

    Y. Zhang and X. Xu: N. J. Chem., 2020, 44, 20544–20567.

    CAS  Google Scholar 

  17. 17.

    Y. Zhang and X. Xu, Computational Materials Science, 2020, 179, 109583.

    CAS  Google Scholar 

  18. 18.

    Y. Zhang and X. Xu, Physica C: Superconductivity and its Applications, 2020, 573, 1353633.

    CAS  Google Scholar 

  19. 19.

    Y. Zhang and X. Xu, Journal of Magnetism and Magnetic Materials, 2020, 512, 166998.

    CAS  Google Scholar 

  20. 20.

    Y. Zhang and X. Xu, Applied Physics A, 2020, 126, 341.

    CAS  Google Scholar 

  21. 21.

    Y. Zhang and X. Xu, AIP Advances, 2020, 10(3), 035220.

    CAS  Google Scholar 

  22. 22.

    Y. Zhang and X. Xu, Physics Letters A, 2020, 384, 126500.

    CAS  Google Scholar 

  23. 23.

    Y. Zhang and X. Xu, AIP Advances, 2020, 10, 045121.

    CAS  Google Scholar 

  24. 24.

    Y. Zhang and X. Xu, Optik, 2020, 217, 164808.

    CAS  Google Scholar 

  25. 25.

    Y. Zhang and X. Xu, RSC Advances, 2020, 10, 20646–653.

    CAS  Google Scholar 

  26. 26.

    Y. Zhang and X. Xu, ACS Omega, 2020, 5, 15344–15352.

    CAS  Google Scholar 

  27. 27.

    Y. Zhang and X. Xu, CrystEngComm, 2020, 22, 6385–6397.

    CAS  Google Scholar 

  28. 28.

    Y. Zhang and X. Xu, ChemistrySelect, 2020, 5, 9999–10009.

    CAS  Google Scholar 

  29. 29.

    Y. Zhang and X. Xu: Met. Mater. Int., 2020. https://doi.org/10.1007/s12540-020-00883-7.

    Article  Google Scholar 

  30. 30.

    Y. Zhang and X. Xu, Physics and Chemistry of Minerals, 2020, 47, 39.

    CAS  Google Scholar 

  31. 31.

    Y. Zhang and X. Xu: Shape Mem. Superelast., 2020, 6, 374–386.

    Google Scholar 

  32. 32.

    Y. Zhang and X. Xu: Int. J. Quantum Chem., 2020. https://doi.org/10.1002/QUA.26480.

    Article  Google Scholar 

  33. 33.

    Y. Zhang and X. Xu: J. Low Temp. Phys., 2020. https://doi.org/10.1007/s10909-020-02545-9.

    Article  Google Scholar 

  34. 34.

    Y. Zhang and X. Xu: J. Mater. Eng. Perform., 2020, 29, 6605–6616.

    Google Scholar 

  35. 35.

    Y. Zhang and X. Xu: Int. J. Mater. Res., 2020. https://doi.org/10.3139/146.111975.

    Article  Google Scholar 

  36. 36.

    Y. Zhang and X. Xu, Heliyon, 2020, 6, e05055.

    Google Scholar 

  37. 37.

    Y. Zhang and X. Xu: J. Supercond. Nov. Magn., 2020. https://doi.org/10.1007/s10948-020-05682-0.

    Article  Google Scholar 

  38. 38.

    Y. Zhang and X. Xu: Mater. Technol., 2020. https://doi.org/10.1080/10667857.2020.1830567

    Article  Google Scholar 

  39. 39.

    Y. Zhang and X. Xu, Chemical Physics Letters, 2020, 760, 137993.

    CAS  Google Scholar 

  40. 40.

    Y. Zhang and X. Xu: J. Mol. Graph. Model., 2021, 103, art. no. 107796.

    CAS  Google Scholar 

  41. 41.

    Y. Zhang and X. Xu: Mach. Learn. Appl., 2021, 3, art. no. 100010.

    Google Scholar 

  42. 42.

    S. Feng, H. Zhou, and H. Dong, Materials & Design, 2019, 162, pp. 300–310.

    Google Scholar 

  43. 43.

    L. Breiman, Machine Learning, 2001, 45(1), pp. 5–32.

    Google Scholar 

  44. 44.

    T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer, New York, 2009.

    Google Scholar 

  45. 45.

    A.D. Bull, J. Mach. Learn. Res., 2011, 12, 2879–2904.

    Google Scholar 

  46. 46.

    M.A. Gelbart, J. Snoek, and R.P. Adams: Mach. Learn, 2014. https://arxiv.org/abs/1403.5607v1.

  47. 47.

    Y. Arata, F. Matsuda, and S. Saruwatari, Transactions of JWRI, 1974, 3(1), pp. 79–88.

    CAS  Google Scholar 

  48. 48.

    J.A. Brooks and W.M. Garrison: Weld. J. N. Y., 1999, 78, pp. 280-s.

    Google Scholar 

  49. 49.

    M.J. Cieslak and W.F. Savage: Doctoral Dissertation, Rensselaer Polytechnic Institute, May 1979.

  50. 50.

    D.H. Kah and D.W. Dickinson: Weld J., 1981, 60, p. 135s.

    Google Scholar 

  51. 51.

    L. Li and R.W. Messler Jr., Weld. J. N. Y., 1999, 78, pp. 387-s.

    Google Scholar 

  52. 52.

    J.C. Lippold, Welding Journal, 1983, 63(3), p. 91.

    Google Scholar 

  53. 53.

    C.D. Lundin, C.Y.P. Qiao, Y. Kikuchi, C. Shi, and T.P.S. Gill: No. ORNL/Sub-88-07685/02, Oak Ridge National Laboratory, TN.

  54. 54.

    C.D. Lundin, C.H. Lee, and C.Y.P. Qiao, Weld. J. N. Y., 1993, 72, pp. 321-s.

    Google Scholar 

  55. 55.

    C.D. Lundin, C.Y.P. Qiao, C.H. Lee, and G. Batten, Weld. Res. Council Bull., 2006, 509, p. 1.

    Google Scholar 

  56. 56.

    C.D. Lundin, C.Y.P. Qiao, T.P.S. Gill, and G.M. Goodwin, Weld. J. N. Y., 1993, 72, pp. 189-s.

    Google Scholar 

  57. 57.

    H. Madarame, T. Sukegawa, and H. Inoue, Fusion Engineering and Design, 1995, 27, pp. 499–506.

    CAS  Google Scholar 

  58. 58.

    T. Ogawa and T. Koseki, Welding Journal, 1988, 67(1), pp. 8s–17s.

    Google Scholar 

  59. 59.

    T. Ogawa and E. Tsunetomi, Welding Journal, 1982, 61(3), p. 82.

    Google Scholar 

  60. 60.

    A.M. Ritter and W.F. Savage, Metallurgical Transactions A, 1986, 17(4), pp. 727–737.

    Google Scholar 

  61. 61.

    C.V. Robino, J.R. Michael, and M.C. Maguire, Weld. J. N. Y., 1998, 77, pp. 446-s.

    Google Scholar 

  62. 62.

    S. Shono, O. Matsumoto, S.I. Kawaguchi, and T. Urabe, Transactions of the Iron and Steel Institute of Japan, 1984, 24(7), pp. 557–565.

    Google Scholar 

  63. 63.

    I. Varol, W.A. Baeslack III, and J.C. Lippold, Metallography, 1989, 23(1), pp. 1–19.

    CAS  Google Scholar 

  64. 64.

    M. Zaghloul, A. Sadek, A. El-Batahgy, M. Hanafy, Yosetsu Gakkai Ronbunshu, 1994, 12(3), 335–341.

    CAS  Google Scholar 

  65. 65.

    K. Kadoi, S. Okano, S. Yamashita, D. Abe, A. Takemori, S. Yamada, A. Takada, J. Kawata, Q. J. Jpn Weld. Soc., 2019, 37, 200–207.

    Google Scholar 

  66. 66.

    D. Statharas, H. Atkinson, R. Thornton, J. Marsden, H. Dong, and S. Wen, Metallurgical and Materials Transactions A, 2019, 50A(4), 1748–1762.

    Google Scholar 

  67. 67.

    S.P. Zhu, Y.Z. Hao, D. Liao, Applied Mathematical Modelling, 2020, 78, 383–398.

    Google Scholar 

  68. 68.

    S. Kumar, M. Ahmed, S.K. Panthi, Journal of Failure Analysis and Prevention, 2020, 20(4), 1212–1228.

    Google Scholar 

  69. 69.

    S. Sajith, K.S.R.K. Murthy, P.S. Robi, International Journal of Fatigue, 2020, 130, 105285.

    CAS  Google Scholar 

  70. 70.

    D.S. Konadu, P.G.H. Pistorius: Weld World, 2020, 64, 987–997.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 18, 2020; accepted December 13, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, X. Predictions of the Total Crack Length in Solidification Cracking Through LSBoost. Metall Mater Trans A 52, 985–1005 (2021). https://doi.org/10.1007/s11661-020-06130-3

Download citation