Skip to main content
Log in

Secondary Recrystallization of Nickel-Base Superalloy CM 247 LC After Processing by Metal Injection Molding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fabrication of parts by metal injection molding (MIM) results in very fine grain sizes. In the present investigation, heat treatments were employed to gain a larger grain size that is more creep resistant. The alloy under investigation was CM 247 LC. The composition was slightly modified to facilitate grain growth. Secondary recrystallization was observed to occur during post-sintering annealing treatments approximately 50 °C below the sintering temperature. The grain size increased from 25 µm to > 2 mm. The increase of grain size was found to improve creep strength significantly. The samples in the as-sintered condition exhibited a bimodal grain size distribution. The grain size in a thin surface zone after sintering was slightly increased because of a lower C and O content in this zone that promoted normal grain growth. Secondary recrystallization did not occur in the surface zone. This is attributed to a lack of driving force in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] R.C. Reed: The superalloys: fundamentals and applications, Cambridge University Press, London, 2009, pp. 1-28.

    Google Scholar 

  2. [2] C.T. Sims, N.S. Stoloff, W.C. Hagel: Superalloys II, John Wiley & Sons, New York, 1987, pp. 3-25.

    Google Scholar 

  3. [3] G.H. Gessinger, M.J. Bomford: Metallurgical Reviews, 1984, vol. 19(1), pp. 51-76.

    Article  Google Scholar 

  4. H.J. Brown: Powder metallurgy, 1964, US Patent, US3,155,502 A.

  5. [5] K. Essa, R. Khan, H. Hassanin, M.M. Attallah, R. Reed: The International Journal of Advanced Manufacturing Technology, 2016, vol. 83(9), pp. 1835-45.

    Article  Google Scholar 

  6. [6] L. Chang, W. Sun, Y. Cui, R. Yang: Metallurgical and Materials Transactions A, 2017, vol. 48(3), pp. 1273-87.

    Article  Google Scholar 

  7. [7] C. Qiu, X. Wu: Philosophical Magazine, 2014, vol. 94(3), pp. 242-64.

    Article  CAS  Google Scholar 

  8. R.M. German: Injection Molding of Metals and Ceramics. Metal Powder Industries Federation, 1997.

  9. [9] H.Ö. Gülsoy, Ö. Özgün, S. Bilketay: Materials Science and Engineering: A, 2016, vol. 651, pp. 914-24.

    Article  Google Scholar 

  10. [10] O. Dugauguez, J.M. Torralba, T. Barriere, J.-C. Gelin: Powder Metallurgy, 2017, vol. 60(2), 131-38.

    Article  CAS  Google Scholar 

  11. Ö. Özgün, R. Yılmaz, H. ÖzkanGülsoy, F. Fındık: Materials Characterization, 2015, vol. 108, pp. 8-15.

    Article  Google Scholar 

  12. [12] W.E. Frazier: Journal of Materials Engineering & Performance, 2014, vol. 23(6), pp. 1917-28.

    Article  CAS  Google Scholar 

  13. [13] H.E. Helmer, C. Körner, R.F. Singer: Journal of Materials Research, 2014, vol. 29(17), pp. 1987-96.

    Article  CAS  Google Scholar 

  14. [14] M. Ramsperger, R.F. Singer, C. Körner: Metallurgical & Materials Transactions A, 2016, vol. 47(3), pp. 1469-80.

    Article  Google Scholar 

  15. R.D. Rivers: Method of injection molding powder metal parts, 1978, US Patent, US4,113,480 A.

  16. Ö. Özgün, H. ÖzkanGülsoy, R. Yilmaz, F. Findik: Journal of Alloys and Compounds, 2013, vol. 546, pp. 192-207.

    Article  Google Scholar 

  17. [17] B. Albert, R. Völkl, U. Glatzel: Metallurgical and Materials Transactions A, 2014, vol. 45(10), pp. 4561-71.

    Article  Google Scholar 

  18. [18] A. Meyer, E. Daenicke, K. Horke, M. Moor, S. Müller, I. Langer, R.F. Singer: Powder Metallurgy, 2016, vol. 59(1), pp. 51-56.

    Article  CAS  Google Scholar 

  19. [19] E. Hnatkova, B. Hausnerova, A. Hales, L. Jiranek, F. Derguti, I. Todd: Powder Technology, 2017, vol. 322, pp. 439-46.

    Article  CAS  Google Scholar 

  20. K. Horke, A. Meyer, E. Daenicke, R. Singer: Proceedings of World PM 2016, Hamburg, 2016.

  21. A. Meyer, K. Horke, E. Daenicke, S. Müller, I. Langer, R.F. Singer: Proceedings of Powdermet 2017, Las Vegas, 2017.

  22. [22] T.G. Langdon: Acta Metallurgica et Materialia, 1994, vol. 42(7), pp. 2437-43.

    Article  CAS  Google Scholar 

  23. T. Langdon: Philosophical Magazine, 1970, vol. 22(178), pp. 689-700.

    Article  Google Scholar 

  24. [24] I. Andersen, Ø. Grong, N. Ryum: Acta Metallurgica Et Materialia, 1995, vol. 43(7), pp. 2689-2700.

    Article  CAS  Google Scholar 

  25. [25] V.Y. Novikov: Acta Metallurgica Et Materialia, 1994, vol. 42(5), pp. 1639-42.

    Article  CAS  Google Scholar 

  26. K. Harris, G.L. Erickson, R.E. Schwer: in Superalloys 1984: Proceedings of the 5th International Symposium of Superalloys. Wiley Online Library, 1984, pp. 221–30.

  27. [27] K. Heck, R. Blackford, R.F. Singer: Materials Science and Technology, 1999, vol. 15(2), pp. 213-20.

    Article  CAS  Google Scholar 

  28. [28] J.E. Doherty, B.H. Kea, A.F. Giamei: JOM, 1971, vol. 23(11), 59-62.

    Article  CAS  Google Scholar 

  29. [29] J. Zhang, R.F. Singer: Acta Materialia, 2002, vol. 50(7), pp. 1869-79.

    Article  CAS  Google Scholar 

  30. [30] D. Raabe: Phys. Metall., 2014, vol. 3, pp. 2291–397.

    Article  Google Scholar 

  31. R. W. Cahn: Phys. Metall., 1996, vol. 3, pp. 2400–500.

    Google Scholar 

  32. [32] A. Lasalmonie, J. L. Strudel: J. Mater. Sci., 1986, vol. 21, pp. 1837-52.

    Article  CAS  Google Scholar 

  33. R.V. Miner, Jr.: NASA Technical Memorandum, 1972, pp. 1–17.

Download references

Acknowledgments

The authors thank Rolls-Royce Deutschland and Bundesministerium für Wirtschaft und Energie BMWi (Federal Ministry for Economic Affairs and Energy) for financial support (Funding Code 20T1312A). Some of the work was done within the framework of the LuFo project “AdCoTurb: Advanced Components for Turbines – Fortschrittliche Turbinenkomponenten.” We also acknowledge the support from Sieglinde Müller at Schunk Sintermetalltechnik GmbH in preparation of the MIM preforms. Naicheng Sheng thanks Jan P. Liebig from WW1, Friedrich-Alexander University of Erlangen-Nuremberg, for his help in grain boundary structure analysis. We thank the technical staff at WTM and ZMP, Friedrich-Alexander University of Erlangen-Nuremberg, for the help during metallography preparation, chemical analysis and machining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naicheng Sheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 17, 2020; accepted October 27, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, N., Meyer, A., Horke, K. et al. Secondary Recrystallization of Nickel-Base Superalloy CM 247 LC After Processing by Metal Injection Molding. Metall Mater Trans A 52, 512–519 (2021). https://doi.org/10.1007/s11661-020-06087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06087-3

Navigation