Dynamic Recrystallization in Cu-Cr-Zr-Ti Alloy Under Large Plane Strain Conditions

Abstract

The Cu-Cr-Zr-Ti alloy was subjected to single-hit plane strain compression tests in the temperature range of 923 K to 1073 K (650 °C to 800 °C) and at two different strain rates of 0.1 and 1 s−1. These tests were performed to ascertain the kinetics of microstructural evolution resulting by dynamic recrystallization (DRX) in the alloy under hot deformation conditions. The differences in the extent of DRX under various deformation conditions were established by plotting fractional softening as a function of strain and time. Further, the Avrami exponent was found to decrease with increase in deformation temperature. This was attributed to early onset of recrystallization leading to subsequent work hardening of the recrystallized grains and grain growth at higher temperatures which results in the loss of nucleation sites due to reduced grain boundary area. Microstructural observations made using optical microscopy, scanning electron microscopy (SEM), and electron backscattered diffraction (EBSD) revealed nucleation to occur in the following steps: elongation of grains perpendicular to the compression direction, bulging of elongated grain boundaries due to strain-induced boundary migration (SIBM), and subsequent subgrain formation behind the bulged boundary due to strain-induced low-angle boundaries. Finally, the equation describing the DRX kinetics under plane strain conditions for the alloy was established as \( X = 1 - \exp \left[ { - 0.455 \times \left( {{{\left( {\varepsilon - \varepsilon_{\text{c}} } \right)} \mathord{\left/ {\vphantom {{\left( {\varepsilon - \varepsilon_{\text{c}} } \right)} {\varepsilon_{\text{p}} }}} \right. \kern-0pt} {\varepsilon_{\text{p}} }}} \right)^{2.84} } \right] \).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    C.M. Sellars, W.J. McG. Tegart, International Metallurgical Reviews 1972, vol. 17, pp. 1-24.

    CAS  Article  Google Scholar 

  2. 2.

    J. Jonas, C. M. Sellars, W. J. McG. Tegart, Metallurgical Reviews, 1969, vol. 14, pp. 1-24.

    Article  Google Scholar 

  3. 3.

    H.J. McQueen, N.D. Ryan, Materials Science and Engineering A, 2002, vol. 322, pp. 43-63.

    Article  Google Scholar 

  4. 4.

    H. Mirzadeh, Mechanics of Materials, 2015, vol. 85, pp. 66–79.

    Article  Google Scholar 

  5. 5.

    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metallurgical Transactions A, 1984, vol. 15, pp. 1883-1892.

    Article  Google Scholar 

  6. 6.

    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Progress in Materials Science, 2014, vol. 60, pp. 130–207.

    CAS  Article  Google Scholar 

  7. 7.

    K. Huang, R.E. Logé, Materials and Design, 2016, vol. 111, pp. 548–574

    CAS  Article  Google Scholar 

  8. 8.

    Y. Zhang, H. Sun, A. A. Volinsky, B. Tian, Z. Chai, P. Liu, Acta Metallurgica Sinica 2016, vol. 29, pp. 422–430.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Zhang, Z. Chai, A. A. Volinsky, B. Tian, H. Sun, P. Liu, Y. Liu, Materials Science & Engineering A, 2016, vol. 662, pp. 320–329.

    CAS  Article  Google Scholar 

  10. 10.

    Y. Zhang, Z. Chai, A. A. Volinsky, H. Sun, B. Tian, P. Liu, Y. Liu, Journal of Materials Engineering and Performance, 2016, vol. 25, pp. 1191-1198.

    CAS  Article  Google Scholar 

  11. 11.

    H. Zhang, J. Wang, Q. Chen, D. Shu, C. Wang, G. Chen, Z. Zhao, Journal of Alloys and Compounds, 2019, vol. 784, pp. 1071-1083

    CAS  Article  Google Scholar 

  12. 12.

    I. S. Batra, G. K. Dey, U. D. Kulkarni, S. Banerjee, Journal of Nuclear Materials, 2001, vol. 299, pp. 91-100.

    CAS  Article  Google Scholar 

  13. 13.

    I. S. Batra, G. K. Dey, U. D. Kulkarni, S. Banerjee, Materials Science & Engineering A, 2002, vol. 356, pp. 32-36.

    Article  Google Scholar 

  14. 14.

    G. Sudarshan-Rao, V. M. J. Sharma, S.G. Sundara-Raman, M. Amruth, P. Ramesh-Narayanan, S. C. Sharma, P.V. Venkitakrishnan, Materials Science & Engineering A, 2016, vol. 668, pp. 97–104.

    Article  Google Scholar 

  15. 15.

    G. Sudarshan-Rao, J. Srinath, S. G. Sundara-Raman, V.M.J. Sharma, S.V.S. Narayana-Murty, P. Ramesh-Narayanan, K. Thomas-Tharian, P. Ram-Kumar, P.V. Venkitakrishnan, Materials Science & Engineering A, 2017, vol. 692 pp. 156–167.

    CAS  Article  Google Scholar 

  16. 16.

    S. Chenna-Krishna, G. Sudarsana-Rao, A. K. Jha, B Pant, P.V. Venkitakrishnan, Materials Science & Engineering A 674 (2016) 164–170.

    Article  Google Scholar 

  17. 17.

    P. Zhang, J. Jie, Y. Gao, T. Wang, T. Li, Materials Science Forum, 2015, vol. 817, pp. 307-311.

    Article  Google Scholar 

  18. 18.

    A. Sarkar, S.V.S. Narayana-Murty, M.J.N.V. Prasad, Materials Performance and Characterization, 2019, vol. 8, pp. 1076–1090.

    CAS  Google Scholar 

  19. 19.

    A. Sarkar, M.J.N.V. Prasad, S.V.S. Narayana-Murty, Materials Characterization, 2020, vol. 160, 110-112.

    Article  Google Scholar 

  20. 20.

    S.V.S. Narayana-Murty, B. Nageswara-Rao, B.P. Kashyap, International Materials Reviews, 2000, vol. 45, pp. 15-26.

    Article  Google Scholar 

  21. 21.

    S.V.S. Narayana-Murty, A. Sarkar, P. Ramesh-Narayanan, P.V. Venkitakrishnan, J. Mukhopadhyay, Materials Science & Engineering A, 2016, vol. 677, pp. 41–49.

    Article  Google Scholar 

  22. 22.

    E. I. Poliak, J. J. Jonas, Acta Materialia, 1996, vol. 44, pp. 127- 136.

    CAS  Article  Google Scholar 

  23. 23.

    H. Mirzadeh, A. Najafizadeh, Materials and Design, 2010, vol. 31, pp.1174–1179.

    CAS  Article  Google Scholar 

  24. 24.

    S. Solhjoo, Materials and Design, 2009, vol. 30, pp. 3036–3040.

    CAS  Article  Google Scholar 

  25. 25.

    T. Sakai, J. J. Jonas, Acta Metallurgica, 1984, vol. 32, pp. 189-209.

    CAS  Article  Google Scholar 

  26. 26.

    D. Qian, Y. Peng, Journal of Materials Engineering and Performance, 2015, vol. 24, pp. 1906-1917.

    CAS  Article  Google Scholar 

  27. 27.

    J. J. Jonas, X. Quelennec, L. Jiang, E. Martin, Acta Materialia, 2009, vol. 57, pp. 2748–2756.

    CAS  Article  Google Scholar 

  28. 28.

    M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, J.M. Prado, Acta Materialia, 2005 vol. 53, pp. 4605–4612.

    Article  Google Scholar 

  29. 29.

    A.M. Wusatowska-Sarnek, H. Miura, T. Sakai, Materials Science & Engineering A, 2002, vol. 323, pp. 177–186.

    Article  Google Scholar 

  30. 30.

    B. Verlinden, J. Driver, I. Samajdar, R. D. Doherty, R. W. Cahn (Editor), Thermo-mechanical processing of metallic materials, Pergamon Mater. Ser., 2007, pp. 168–77.

  31. 31.

    S. Suwas, R.K. Ray, B. Derby (Series Editor), Crystallographic Texture of Materials, Springer Engineering Materials and Processes Series, 2014, pp. 109–113.

  32. 32.

    F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, 2nd edition, 2014, Elsevier, Amsterdam, pp. 68-72.

    Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the Indian Space Research Organization for their funding support provided under the Project Number RD/0116-ISRO000-006. The authors are grateful to the Centre of Excellence in Steel Technology (CoEST) and National OIM-Texture lab of IIT Bombay for extending Gleeble 3800-GTC and EBSD facilities for carrying out the plane strain compression tests and EBSD analysis, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aditya Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manucsript submitted March 16, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Murty, S.V.S.N. & Prasad, M.J.N.V. Dynamic Recrystallization in Cu-Cr-Zr-Ti Alloy Under Large Plane Strain Conditions. Metall Mater Trans A (2020). https://doi.org/10.1007/s11661-020-05892-0

Download citation