Analysis of Martensitic Transformation Plasticity Under Various Loadings in a Low-Carbon Steel: An Elastoplastic Phase Field Study

Abstract

An elastoplastic phase field model for the martensitic transformation of a Fe-0.22C-1.58Mn-0.81Si (wt pct) alloy was developed, to investigate transformation plasticity in response to uniaxial, biaxial, shear and axial-shear loadings below half the yield strength of austenite. The simulation results clearly demonstrate the preferential orientation of martensite variants as well as plastic behavior during transformation. The data also suggest that the transformation plasticity coefficient is independent of external stress. Preferential orientation can occur under both axial and shear loading conditions, and the equivalent values of transformation plastic strains are roughly the same regardless of the stress components in the combined axial and shear loadings. Similar microstructural evolution and deformation behaviors were identified in response to both uniaxial and biaxial loadings when the uniaxial stress was equal to the difference in applied stresses along both axes during biaxial loading. The Magee mechanism is considered to play a predominant role in martensitic transformation plasticity, although both the Magee and Greenwood-Johnson mechanisms can be identified through simulations. This work demonstrates that the accumulated plastic strain in martensite is primarily inherited from the parent austenite phase, with only a negligible portion due to the yielding of martensite.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    F. Barbe, R. Quey and L. Taleb: Eur. J. Mech. A Solids, 2007, vol. 26, pp. 611-625.

    Google Scholar 

  2. 2.

    G. W. Greenwood and R. Johnson: Proc. R. Soc. Lond. A, 1965, vol. 283, pp. 403-422.

    Google Scholar 

  3. 3.

    H. Han, J. Lee, D.-W. Suh and S.-J. Kim: Philos. Mag., 2007, vol. 87, pp. 159-176.

    CAS  Google Scholar 

  4. 4.

    H. N. Han, S.-J. Kim, M. Kim, G. Kim, D.-W. Suh and S.-J. Kim: Philos. Mag., 2008, vol. 88, pp. 1811-1824.

    CAS  Google Scholar 

  5. 5.

    C. L. Magee: Carnegie Inst. of Tech.: Pittsburgh, p. 309.

  6. 6.

    S. Grostabussiat, L. Taleb, J. F. Jullien and F. Sidoroff: J. Phys. IV France, 2001, vol. 11, pp. 173-180.

    Google Scholar 

  7. 7.

    T. Otsuka, T. Akashi, S. Ogawa, T. Imai and A. Egami: J. Soc. Mater. Sci., 2011, vol. 60, pp. 937-942.

    CAS  Google Scholar 

  8. 8.

    Y. Liu, S. Qin, J. Zhang, Y. Wang, Y. Rong, X. Zuo and N. Chen: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4943-4956.

    Google Scholar 

  9. 9.

    J.-B. Leblond: Int. J. Plast., 1989, vol. 5, pp. 573-591.

    CAS  Google Scholar 

  10. 10.

    J.-B. Leblond, J. Devaux and J. Devaux: Int. J. Plast., 1989, vol. 5, pp. 551-572.

    CAS  Google Scholar 

  11. 11.

    J.-C. Videau, G. Cailletaud, and A. Pineau: J. Phys. IV, vol. 6(1), pp. 465-474 (1996).

    CAS  Google Scholar 

  12. 12.

    T. Otsuka, R. Brenner and B. Bacroix: Int. J. Eng. Sci., 2018, vol. 127, pp. 92-113.

    Google Scholar 

  13. 13.

    M. Coret, S. Calloch and A. Combescure: Int. J. Plast., 2002, vol. 18, pp. 1707-1727.

    CAS  Google Scholar 

  14. 14.

    M. Coret, S. Calloch and A. Combescure: Eur. J. Mech. A Solids, 2004, vol. 23, pp. 823-842.

    Google Scholar 

  15. 15.

    L. Taleb and F. Sidoroff: Int. J. Plast., 2003, vol. 19, pp. 1821-1842.

    CAS  Google Scholar 

  16. 16.

    Y. El Majaty, J.-B. Leblond and D. Kondo: J. Mech. Phys. Solids, 2018, vol. 121, pp. 175-197.

    Google Scholar 

  17. 17.

    D. Weisz-Patrault: J. Mech. Phys. Solids, 2017, vol. 106, pp. 152-175.

    Google Scholar 

  18. 18.

    M. Wolff, M. Böhm, M. Dalgic, G. Löwisch, N. Lysenko and J. Rath: Comput. Mater. Sci., 2006, vol. 37, pp. 37-41.

    CAS  Google Scholar 

  19. 19.

    F.-D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud and T. Antretter: Int. J. Plast., 2000, vol. 16, pp. 723-748.

    CAS  Google Scholar 

  20. 20.

    M. Coret and A. Combescure: J. Phys. IV France, 2004, vol. 120, pp. 177-183.

    CAS  Google Scholar 

  21. 21.

    L. Taleb and S. Petit: Int. J. Plast., 2006, vol. 22, pp. 110-130.

    CAS  Google Scholar 

  22. 22.

    H.-G. Lambers, S. Tschumak, H. Maier and D. Canadinc: Mater. Sci. Eng. A, 2010, vol. 527, pp. 625-633.

    Google Scholar 

  23. 23.

    S. Meftah, F. Barbe, L. Taleb and F. Sidoroff: Eur. J. Mech. A Solids, 2007, vol. 26, pp. 688-700.

    Google Scholar 

  24. 24.

    H. M. Paranjape, S. Manchiraju and P. M. Anderson: Int. J. Plast., 2016, vol. 80, pp. 1-18.

    CAS  Google Scholar 

  25. 25.

    H. N. Han, C. G. Lee, D.-W. Suh and S.-J. Kim: Mater. Sci. Eng. A, 2008, vol. 485, pp. 224-233.

    Google Scholar 

  26. 26.

    J.-F. Ganghoffer and K. Simonsson: Mech. Mater., 1998, vol. 27, pp. 125-144.

    Google Scholar 

  27. 27.

    M. Cherkaoui, M. Berveiller and H. Sabar: Int. J. Plast., 1998, vol. 14, pp. 597-626.

    CAS  Google Scholar 

  28. 28.

    S. Cui, Y. Cui, J. Wan, Y. Rong and J. Zhang: Comput. Mater. Sci., 2016, vol. 121, pp. 131-142.

    CAS  Google Scholar 

  29. 29.

    S. Cui, J. Wan, X. Zuo, N. Chen and Y. Rong: Mater. Design, 2016, vol. 109, pp. 88-97.

    CAS  Google Scholar 

  30. 30.

    S. Furukawa, H. Ihara, Y. Murata, Y. Tsukada and T. Koyama: Comput. Mater. Sci., 2016, vol. 119, pp. 108-113.

    CAS  Google Scholar 

  31. 31.

    A. Yamanaka, T. Takaki and Y. Tomita: Mater. Sci. Eng. A, 2008, vol. 491, pp. 378-384.

    Google Scholar 

  32. 32.

    A. Yamanaka, T. Takaki and Y. Tomita: Int. J. Mech. Sci., 2010, vol. 52, pp. 245-250.

    Google Scholar 

  33. 33.

    H. K. Yeddu, A. Malik, J. Ågren, G. Amberg and A. Borgenstam: Acta Mater., 2012, vol. 60, pp. 1538-1547.

    CAS  Google Scholar 

  34. 34.

    R. Schmitt, C. Kuhn and R. Müller: Continuum Mech. Thermodyn., 2017, vol. 29, pp. 957-968.

    CAS  Google Scholar 

  35. 35.

    H. K. Yeddu, A. Borgenstam and J. Ågren: Acta Mater., 2013, vol. 61, pp. 2595-2606.

    CAS  Google Scholar 

  36. 36.

    H. K. Yeddu, T. Lookman and A. Saxena: Acta Mater., 2013, vol. 61, pp. 6972-6982.

    CAS  Google Scholar 

  37. 37.

    S. Cui, J. Wan, Y. Rong and J. Zhang: Comput. Mater. Sci., 2017, vol. 139, pp. 285-294.

    CAS  Google Scholar 

  38. 38.

    S. Cui, J. Wan, J. Zhang, N. Chen and Y. Rong: Metall. Mater. Trans. A, 2018, vol. 49, pp. 5936-5941.

    CAS  Google Scholar 

  39. 39.

    E. Schoof, D. Schneider, N. Streichhan, T. Mittnacht, M. Selzer and B. Nestler: Int. J. Solids Struct., 2018, vol. 134, pp. 181-194.

    CAS  Google Scholar 

  40. 40.

    H. K. Yeddu, B. A. Shaw and M. A. Somers: Mater. Sci. Eng. A 2017, vol. 690, pp. 1–5.

    CAS  Google Scholar 

  41. 41.

    Z. Dai, R. Ding, Z. Yang, C. Zhang and H. Chen: Acta Mater., 2018, vol. 144, pp. 666-678.

    CAS  Google Scholar 

  42. 42.

    R. Schmitt, R. Müller, C. Kuhn and H. M. Urbassek: Arch. Appl. Mech., 2013, vol. 83, pp. 849-859.

    Google Scholar 

  43. 43.

    A. Malik, G. Amberg, A. Borgenstam and J. Ågren: Modell. Simul. Mater. Sci. Eng., 2013, vol. 21, p. 085003.

    Google Scholar 

  44. 44.

    X. Guo, S.-Q. Shi and X. Ma: Appl. Phys. Lett., 2005, vol. 87, p. 221910.

    Google Scholar 

  45. 45.

    J.-P. Schillé, Z. Guo, N. Saunders and A. P. Miodownik: Mater. Manuf. Processes, 2011, vol. 26, pp. 137-143.

    Google Scholar 

  46. 46.

    A. Malik, H. K. Yeddu, G. Amberg, A. Borgenstam and J. Ågren: Mater. Sci. Eng. A, 2012, vol. 556, pp. 221-232.

    CAS  Google Scholar 

  47. 47.

    F. Barbe, R. Quey, L. Taleb and E. S. de Cursi: Eur. J. Mech. A Solids, 2008, vol. 27, pp. 1121-1139.

    Google Scholar 

  48. 48.

    A. Boudiaf, L. Taleb and M. Belouchrani: Eur. J. Mech. A Solids, 2011, vol. 30, pp. 326-335.

    Google Scholar 

  49. 49.

    H. P. Liu, (Shanghai Jiao Tong University: shanghai, 2011), p 124.

  50. 50.

    X. Zhang, G. Shen, C. Li and J. Gu: Modell. Simul. Mater. Sci. Eng., 2019, vol. 27, p. 075011.

    CAS  Google Scholar 

  51. 51.

    X. Zhang, G. Shen, C. Li and J. Gu: Mater. Design, 2020, vol. 188, p. 108426.

    CAS  Google Scholar 

  52. 52.

    H. K. Yeddu, T. Lookman, A. Borgenstam, J. Ågren and A. Saxena: Mater. Sci. Eng. A, 2014, vol. 608, pp. 101–105.

    CAS  Google Scholar 

  53. 53.

    G. Olson and M. Cohen: J. Less-Common Met., 1972, vol. 28, pp. 107-118.

    CAS  Google Scholar 

  54. 54.

    M. Dalgic and G. Löwisch: Materialwiss. Werkstofftech., 2006, vol. 37, pp. 122-127.

    CAS  Google Scholar 

  55. 55.

    K. Zilnyk, D. A. Junior, H. R. Z. Sandim, P. R. Rios and D. Raabe: Acta Mater., 2018, vol. 143, pp. 227-236.

    CAS  Google Scholar 

  56. 56.

    A. Shibata, S. Morito, T. Furuhara and T. Maki: Scripta Mater., 2005, vol. 53, pp. 597-602.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51801126).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 5, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Shen, G., Xu, J. et al. Analysis of Martensitic Transformation Plasticity Under Various Loadings in a Low-Carbon Steel: An Elastoplastic Phase Field Study. Metall Mater Trans A (2020). https://doi.org/10.1007/s11661-020-05889-9

Download citation