Enhanced Degradation in Grain Refinement of Inoculated 2024 Al Alloy in Steady Magnetic field


The grain refinement of 2024 Al alloy inoculated with Al-5Ti-1B master alloy in a steady magnetic field (SMF) was investigated. It was shown that the degradation in grain refinement was enhanced and a cellular–dendritic transition of equiaxed primary α-Al grains occurred under the SMF. Employing a differential scanning calorimeter, the nucleation temperature of primary α-Al phase was found to decrease in the SMF, i.e., the undercooling was enhanced, and the kinetics of phase transformation was modified in the SMF. The enhanced degradation in grain refinement and increase in undercooling are attributed to the modified solid/liquid interfacial free energy and the delay of formation of critical nucleus due to the retarded migration rate of atoms in the liquid phase in the SMF. The cellular–dendritic transition of primary α-Al grains is ascribed to the modified constitutional undercooling at the solid/liquid interface, which results from the change in solute distribution by the damped convection and retarded diffusivity in the SMF. Additionally, the increase in growth dimension and the modified solid/liquid interfacial free energy under the SMF are also responsible for the enhanced constitutional undercooling and the cellular–dendritic transition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Z.H.I. Sun, M. Guo, J. Vleugels, O. Van der Biest, and B. Blanpain: Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, pp. 254–67.

    CAS  Google Scholar 

  2. 2.

    Z.H.I. Sun, M. Guo, J. Vleugels, O. Van der Biest, and B. Blanpain: Curr. Opin. Solid State Mater. Sci., 2013, vol. 17, pp. 193–201.

    CAS  Google Scholar 

  3. 3.

    M. Hasegawa and S. Asai: J. Mater. Sci., 1992, vol. 27, pp. 6123–6.

    CAS  Google Scholar 

  4. 4.

    Y.K. Zhang, Y.L. Zhou, J.R. Gao, and J.C. He: Mater. Sci. Forum, 2010, vol. 649, pp. 281–6.

    CAS  Google Scholar 

  5. 5.

    C. Li, R. Guo, Z. Yuan, W. Xuan, Z. Ren, Y. Zhong, X. Li, H. Wang, and Q. Wang: Philos. Mag. Lett., 2015, vol. 95, pp. 37–43.

    CAS  Google Scholar 

  6. 6.

    J. Wang, Y. He, J. Li, H. Kou, and E. Beaugnon: Jpn. J. Appl. Phys., 2016, vol. 55, p. 105601.

    Google Scholar 

  7. 7.

    R. Guo, C. Li, S. He, J. Wang, W. Xuan, X. Li, Y. Zhong, and Z. Ren: Jpn. J. Appl. Phys., 2018, vol. 57, p. 80301.

    Google Scholar 

  8. 8.

    T. Liu, Q. Wang, F. Liu, G. Li, and J. He: J. Cryst. Growth, 2011, vol. 321, pp. 167–70.

    CAS  Google Scholar 

  9. 9.

    C. Li, H. Yang, Z. Ren, W. Ren, and Y. Wu: J. Alloys Compd., 2010, vol. 505, pp. 108–12.

    CAS  Google Scholar 

  10. 10.

    Z. Sun, X. Guo, M. Guo, C. Li, J. Vleugels, Z. Ren, O. Van der Biest, and B. Blanpain: J. Phys. Chem. C, 2012, vol. 116, pp. 17676–81.

    CAS  Google Scholar 

  11. 11.

    R. Guo, C. Li, S. He, J. Wang, W. Xuan, X. Li, Y. Zhong, and Z. Ren: EPL 2019, 126: 46001.

    CAS  Google Scholar 

  12. 12.

    D.G. McCartney: Int. Mater. Rev., 1989, vol. 34, pp. 247–60.

    CAS  Google Scholar 

  13. 13.

    P. Schumacher, A.L. Greer, J. Worth, P. V. Evans, M.A. Kearns, P. Fisher, and A.H. Green: Mater. Sci. Technol., 1998, vol. 14, pp. 394–404.

    CAS  Google Scholar 

  14. 14.

    B.S. Murty, S.A. Kori, and M. Chakraborty: Int. Mater. Rev., 2002, vol. 47, pp. 3–29.

    CAS  Google Scholar 

  15. 15.

    Z. Liu: Metall. Mater. Trans. A 2017, 48: 4755–76.

    CAS  Google Scholar 

  16. 16.

    I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229–37.

    CAS  Google Scholar 

  17. 17.

    Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto: Acta Mater., 2015, vol. 84, pp. 292–304.

    CAS  Google Scholar 

  18. 18.

    M. Abdel-Reihim, N. Hess, W. Reif, and M.E.J. Birch: J. Mater. Sci., 1987, vol. 22, pp. 213–8.

    CAS  Google Scholar 

  19. 19.

    Y.C. Lee, A.K. Dahle, D.H. StJohn, and J.E.C. Hutt: Mater. Sci. Eng. A, 1999, vol. 259, pp. 43–52.

    Google Scholar 

  20. 20.

    L. Li, Q. Zhu, H. Zhang, Y. Zuo, C. Ban, L. He, H. Liu, and J. Cui: Mater. Charact., 2014, vol. 95, pp. 1–11.

    CAS  Google Scholar 

  21. 21.

    A. Cibula: J. Inst. Met., 1951, vol. 80, pp. 1–15.

    CAS  Google Scholar 

  22. 22.

    G.P. Jones and J. Pearson: Metall. Trans. B, 1976, vol. 7, pp. 223–34.

    Google Scholar 

  23. 23.

    P.L. Schaffer and A.K. Dahle: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 373–8.

    Google Scholar 

  24. 24.

    C. Limmaneevichitr and W. Eidhed: Mater. Sci. Eng. A, 2003, vol. 349, pp. 197–206.

    Google Scholar 

  25. 25.

    G.W.H. Höhne, W. Hemminger, and H.-J. Flammersheim: in Differential Scanning Calorimetry, Springer Berlin Heidelberg, Berlin, Heidelberg, 1996, pp. 81–104.

  26. 26.

    M.N. Magomedov: Tech. Phys. Lett., 2002, vol. 28, pp. 116–8.

    CAS  Google Scholar 

  27. 27.

    L. Valko and M. Valko: IEEE Trans. Magn., 1994, vol. 30, pp. 1122–3.

    Google Scholar 

  28. 28.

    Y. Fujimura and M. Iino: J. Appl. Phys., 2008, vol. 103, p. 124903.

    Google Scholar 

  29. 29.

    C. Li, Y. Cao, R. Guo, S. He, W. Xuan, X. Li, Y. Zhong, and Z. Ren: Rev. Sci. Instrum., 2017, vol. 88, p. 115110.

    Google Scholar 

  30. 30.

    C. Li, L. Chen, and Z. Ren: Rev. Sci. Instrum., 2012, vol. 83, p. 43906.

    Google Scholar 

  31. 31.

    C. Li, L. Chen, and Z. Ren: J. Mol. Liq., 2013, vol. 181, pp. 51–4.

    CAS  Google Scholar 

  32. 32.

    C. Li, Y. Cao, S. Lippmann, Z. Ren, and M. Rettenmayr: J. Phys. Chem. C, 2018, vol. 122, pp. 27451–5.

    CAS  Google Scholar 

  33. 33.

    A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche: Adv. Eng. Mater., 2003, vol. 5, pp. 81–91.

    CAS  Google Scholar 

  34. 34.

    A.. Greer, A.. Bunn, A. Tronche, P.. Evans, and D.. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    CAS  Google Scholar 

  35. 35.

    M. Qian: Acta Mater., 2007, vol. 55, pp. 943–53.

    CAS  Google Scholar 

  36. 36.

    F. Nolfi, P.G. Shewmon, and J.S. Foster: Trans. Meter. Soc. AIME, 1969, vol. 245, pp. 1427–33.

    CAS  Google Scholar 

  37. 37.

    R. Zhang, Q. Cao, S. Pang, Y. Wei, and L. Liu: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 3–5.

    CAS  Google Scholar 

  38. 38.

    H.B. Aaron and G.R. Kotler: Metall. Trans., 1971, vol. 2, pp. 393–408.

    CAS  Google Scholar 

  39. 39.

    B.A. Mueller and J.H. Perepezko: Metall. Trans. A, 1991, vol. 18, pp. 1143–50.

    Google Scholar 

  40. 40.

    C. Bresolin and S. Pirotta: Microelectron. Eng., 2002, vol. 64, pp. 125–30.

    CAS  Google Scholar 

  41. 41.

    W. V. Youdelis, D.R. Colton, and J. Cahoon: Can. J. Phys., 1964, vol. 42, pp. 2217–37.

    CAS  Google Scholar 

  42. 42.

    Z. Yuan, Z. Ren, C. Li, Q. Xiao, Q. Wang, Y. Dai, and H. Wang: Mater. Lett., 2013, vol. 108, pp. 340–2.

    CAS  Google Scholar 

  43. 43.

    C. Li, Z. Yuan, R. Guo, W. Xuan, Z. Ren, Y. Zhong, X. Li, H. Wang, and Q. Wang: J. Alloys Compd., 2015, vol. 641, pp. 7–13.

    CAS  Google Scholar 

  44. 44.

    T. Miyake, Y. Inatomi, and K. Kuribayashi: Jpn. J. Appl. Phys., 2002, vol. 41, pp. L811–3.

    CAS  Google Scholar 

  45. 45.

    G. Mathiak and G. Frohberg: Cryst. Res. Technol., 1999, vol. 34, pp. 181–8.

    CAS  Google Scholar 

  46. 46.

    M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    CAS  Google Scholar 

  47. 47.

    M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    CAS  Google Scholar 

  48. 48.

    M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    CAS  Google Scholar 

  49. 49.

    D.W. Henderson: J. Therm. Anal., 1979, vol. 15, pp. 325–31.

    CAS  Google Scholar 

  50. 50.

    D.W. Henderson: J. Non Cryst. Solids, 1979, vol. 30, pp. 301–15.

    CAS  Google Scholar 

  51. 51.

    J.W. Christian: The Theory of Transformations in Metals and Alloys, 3rd ed., Pergamon, Boston, MA, 2002.

    Google Scholar 

  52. 52.

    Y. Shibuta, S. Sakane, T. Takaki, and M. Ohno: Acta Mater., 2016, vol. 105, pp. 328–37.

    CAS  Google Scholar 

  53. 53.

    N. Iqbal, N.H. van Dijk, V.W.J. Verhoeven, T. Hansen, L. Katgerman, and G.J. Kearley: Mater. Sci. Eng. A, 2004, vol. 367, pp. 82–8.

    Google Scholar 

  54. 54.

    X. Xie and H. Gao: J. Non. Cryst. Solids, 1998, vol. 240, pp. 166–76.

    CAS  Google Scholar 

  55. 55.

    S. Mahadevan, A. Giridhar, and A.K. Singh: J. Non. Cryst. Solids, 1986, vol. 88, pp. 11–34.

    CAS  Google Scholar 

  56. 56.

    R. Trivedi: J. Cryst. Growth, 1980, vol. 49, pp. 219–32.

    CAS  Google Scholar 

Download references


This work was financially supported by the Project of the Ministry of Science and Technology of China (2017YFB0405902), the Joint Funds of the National Natural Science Foundation of China (51701112 and 51690162), and National Science and Technology Major Project (2017-VII-0008-0102).

Author information



Corresponding authors

Correspondence to Jiang Wang or Zhongming Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 26, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Shuai, S., Zhao, R. et al. Enhanced Degradation in Grain Refinement of Inoculated 2024 Al Alloy in Steady Magnetic field. Metall Mater Trans A (2020). https://doi.org/10.1007/s11661-020-05881-3

Download citation