Austenite Grain Growth Behaviors of La-Microalloyed H13 Steel and Its Effect on Mechanical Properties

Abstract

Controlling austenite grain size is an effective method to improve mechanical properties of alloy steels. This article shows that La addition can effectively restrain the growth of austenite grains in H13 steel and make the grain size distribution more uniform. When holding at 1050 °C from 10 to 180 minutes, the average austenite grain of La-microalloyed H13 steel increases by 35.7 pct, while that of La-free H13 steel increases by 66.7 pct. With the extension of austenitizing time, the decrease in the strength and the plasticity of tempered La-microalloyed H13 steel is considerably less than those of tempered La-free H13 steel. Austenitized at 1050 °C for 180 minutes, the tensile strength and the elongation to failure of the tempered La-microalloyed steel are 1895 MPa and 9.3 pct, respectively. The addition of La increases the amount of undissolved carbide V8C7 and refines the carbide, and La2O2S particles with high melting point are detected. Because of the combined effect of these fine dispersed second-phase particles, the pinning effect on grain boundary migration increases, and the grain growth is restrained. Some martensitic substructures transform from twin configuration to dislocation configuration because of La addition, and the lath bundles of martensite are refined. As a result, the strength and the toughness of the steel are improved.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    M. Elakkiya and U. Thendralarasu: Mater. Sci. Eng. A, 2018, vol. 716, pp. 92-98.

    Article  Google Scholar 

  2. 2.

    B. B. Wu, X. L. Wang, Z. Q. Wang, J. X. Zhao, Y.H. Jin, C.S. Wang, C.J. Shang and R.D.K. Misra: Mater. Sci. Eng. A, 2018, vol. 745, pp. 126-136.

    Article  Google Scholar 

  3. 3.

    S. C. Kennett, G. Krauss and K. O. Findley: Scr. Mater, 2015, vol. 107, pp. 123-126.

    CAS  Article  Google Scholar 

  4. 4.

    T. Xiong, G. Xu, Q. Yuan, H. J. Hu and J. Y. Tian: Metall. Micro. Analysis, 2019, vol. 8, pp. 241-248.

    CAS  Google Scholar 

  5. 5.

    R. C. Chen, C. Hong, J. J. Li, Z. Z. Zheng and P. C. Li: Procedia. Eng, 2017, vol. 207, pp. 17-22.

    Google Scholar 

  6. 6.

    Y. J. Wang, J. J. Sun, T. Jiang, C. Yang, Q. Tan, S. W. Guo and Y. N. Liu: Mater. Sci. Eng. A. 2019, vol. 754, pp. 1-8.

    CAS  Article  Google Scholar 

  7. 7.

    G. W. Yang, X. J. Sun, Q. L. Yong, Z. D. Li and X.X. Li: J. Iron Steel Res. Int, 2014, vol. 21, pp. 757-764.

    CAS  Article  Google Scholar 

  8. 8.

    X. Q. Ma, B. Langelier, B. Gault and S. Subramanian. Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2460-2471.

    Article  Google Scholar 

  9. 9.

    J. Guang, H. G. Xiu, G. L. Zhen and K. Zhang: J. Iron Steel Res. Int, 2018, vol. 26, pp. 292-300.

    Google Scholar 

  10. 10.

    Z. Y. Liu, Y. P. Bao, M. Wang, X. Li and F. Z. Zeng: Int. J. Min. Metall. Mater, 2019, vol. 26, pp. 282-290.

    CAS  Article  Google Scholar 

  11. 11.

    K. Zhu and Z. Yang (2011) Metall. Mater. Trans, A vol. 42, pp. 2207-2213.

    CAS  Article  Google Scholar 

  12. 12.

    J. Yang, F. F. Hao and D. Li: J. Rare Earth, 2012, vol. 30, pp. 814-819.

    CAS  Article  Google Scholar 

  13. 13.

    Q. C. Zhou, Y. J. Pan, X. J. Wu and D. K. Chen: Chinese Rare Earths, 2007, vol. 28, pp. 66-70.

    CAS  Google Scholar 

  14. 14.

    N. Yan, S. F. Yu and Y. Chen: J. Rare Earth, 2017, vol. 35, pp. 203-210.

    CAS  Article  Google Scholar 

  15. 15.

    J. Zhu, Z. H. Zhang and J. X. Xie: Mater. Sci. Eng. A, 2019, vol. 752, pp. 101-114.

    CAS  Article  Google Scholar 

  16. 16.

    Y. Lu, K. Ripplinger, X. J. Huang, Y. Mao, D. Detwiler and A. A. Luo: J. Mater. Pro. Tech, 2019, vol. 271, pp. 444-454.

    CAS  Article  Google Scholar 

  17. 17.

    B. Zhang, J. T. Liu, H. B. Zhang and X.Y. Ruan: J. Cent South Univ, 2002, vol. 9, pp. 240-245.

    CAS  Article  Google Scholar 

  18. 18.

    C. N. Elias and C.S. DaCoataViana (1992) J. Mater. Eng. Perform. 1, 751-754.

    CAS  Article  Google Scholar 

  19. 19.

    T. S. Li, F. M. Wang, C. R. Li, G. Q. Zhang and Q.Y. Meng: J.Iron Steel Res. Int, 2015, vol. 22, pp. 330-336.

    CAS  Article  Google Scholar 

  20. 20.

    J. Chen, W. J. Li, X. K. Liu, J. Y. Wang and R. S. Sheng: Metal Heat Treatment, 2019, vol. 44. pp. 226-229.

    Google Scholar 

  21. 21.

    C. M. Sellars and J. A. Whiteman: Met. Sci, 1979, vol. 13, pp. 187-194.

    CAS  Article  Google Scholar 

  22. 22.

    [E. Anelli: ISIJ. Int, 1992, vol. 32, pp. 440-449.

    CAS  Article  Google Scholar 

  23. 23.

    A. G. Ning, W. W. Mao, H. J. Guo and X. C. Chen: The China. J. Process Eng, 2014, vol. 14, pp. 1041-1046.

    CAS  Google Scholar 

  24. 24.

    W. W. Song, Y. A. Min and X. C. Wu: Trans. Mater. Heat Treat, 2009, vol. 30, pp. 122-126.

    CAS  Google Scholar 

  25. 25.

    A. G. Ning, H. J. Guo, X. C. Chen and X. L. Sun: J. Univ Sci Technol B, 2014, vol. 36, pp. 895-902.

    CAS  Google Scholar 

  26. 26.

    L. M. Wang, T. Du, X. L. Lu, Z. B. Li and Y. C. Gai: J. Rare Earth, 2003, vol. 21, pp. 251-254.

    Google Scholar 

  27. 27.

    H. H. Liu, P. X. Fu, H. W. Liu, C. Sun, J. Z. Gao and D. Z. Li: Metals, 2017, vol. 7. pp. 463-479.

    CAS  Article  Google Scholar 

  28. 28.

    J. Zhu, J. X. Xie, Z. H. Zhang and H. Y. Huang: steel res. Int, 2018, vol. 89, pp. 1800044-1800054.

    Article  Google Scholar 

  29. 29.

    J. Z. Gao, P. X. Fu, H. W. Liu and D. Z. Li: Metals, 2015, vol. 5. pp. 383-394.

    CAS  Article  Google Scholar 

  30. 30.

    Q. X. Yang, Y. H. Zhou, Y. L. Li and M. Yao: J. Rare Earth, 2002, vol. 20. pp. 291-294.

    Google Scholar 

  31. 31.

    C. Zener: Metall. Mater. Trans. A, 1948, vol. 175A, pp. 15-51.

    Google Scholar 

  32. 32.

    J. G. Chen, Y. C. Liu, C. X. Liu, B. Y. Yan and H. J. Li: J. Iron Steel Res. Int, 2017, vol. 24, pp. 705-710.

    Article  Google Scholar 

  33. 33.

    X. G. Zhang, K. Matsuura and M. Ohno: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4623-4634.

    Article  Google Scholar 

  34. 34.

    Y. L. Wang, K. X. Song, Y. M. Zhang and G. X. Wang: Mater. Sci. Eng. A, 2019, vol. 746. pp. 127-133.

    CAS  Article  Google Scholar 

  35. 35.

    Z. J. Luo, J. C. Shen, H. Su, Y. H. Ding, C. F. Yang, and X. Zhu: J. Iron Steel Res. Int, 2010, vol. 17, pp. 40-48.

    CAS  Article  Google Scholar 

  36. 36.

    X. T. Wang, Y. L. Yao and T. H. Shao: Acta Metal. Sin, 1990, vol.26, pp. 426-437.

    Google Scholar 

Download references

Acknowledgments

The research is financially supported by the Fundamental Research Funds for the Central Universities and the NSFC-Liaoning Joint Fund through Contact No. U1708251.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhihao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 2, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Zhu, J. & Zhang, Z. Austenite Grain Growth Behaviors of La-Microalloyed H13 Steel and Its Effect on Mechanical Properties. Metall Mater Trans A (2020). https://doi.org/10.1007/s11661-020-05872-4

Download citation