On the Corrosion Mechanism of Borided X12CrNiMoV12-3 Steel Immersed in a Neutral Aqueous Solution Containing Chloride and Sulfate Ions


The corrosion behavior of borided X12CrNiMoV12-3 steel immersed during 5 days in a 0.1 M NaCl + 0.04 M Na2SO4 aqueous solution was obtained. The boride layer (FeB/Fe2B) formed on the surface of the material was developed using the powder-pack boriding process at 1223 K during 6 hours of exposure. Some corrosion electrochemical parameters such as the polarization resistance, the current density, the anodic and cathodic Tafel slopes were determined by means of the potentiodynamic polarization technique, in which the corrosion resistance values of the borided stainless steel were compared with those estimated for the non-borided X12CrNiMoV12-3 steel (reference material).The corrosion behavior of the borided X12CrNiMoV12-3 steel was associated with the development of B2S3 and Fe2O3 on the surface of the boride layer as well as for the presence of texture fibers such as {020}//ND and {021}//ND (estimated from crystallographic texture analysis), which drastically reduced the corrosion resistance values of the boride layer exposed to the aqueous solution. Finally, the electrochemical reactions produced during the immersion of the borided X12CrNiMoV12-3 steel in the neutral chloride-sulfate aqueous solution were proposed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    A. Dalmau, C. Richard, A. Igual-Muñoz: Tribol. Int. 2018, vol. 121, pp. 167-79.

    CAS  Article  Google Scholar 

  2. 2.

    A. Dalmau, W. Rmili, C. Richard, A. Igual-Muñoz: Wear, 2016, vol. 368, pp. 146-55.

    Article  Google Scholar 

  3. 3.

    F. Klocke, S. Leung, B. Karpuschewski, J.A. Webster, D. Novovic, A. Elfizy, D.A. Axinte, S. Tönissen: CIRP Ann-Manuf. Technol. 2015, vol. 64, pp. 581-604.

    Article  Google Scholar 

  4. 4.

    A. Turnbull, S. Zhou: Corros. Sci. 2010, vol. 52, pp. 2936-44.

    CAS  Article  Google Scholar 

  5. 5.

    S. Marcelin, N. Pébère, S. Régnier: Electrochim. Acta, 2013, vol. 87, pp. 32-40.

    CAS  Article  Google Scholar 

  6. 6.

    S. Marcelin, N. Pébère, S. Régnier: J. Electroanal. Chem. 2015, vol. 737, pp. 198-205.

    CAS  Article  Google Scholar 

  7. 7.

    J. Jiang, Y. Wang, Q. Zhong, Q. Zhou, L. Zhang: Surf. Coat. Technol. 2011, vol. 206, pp. 473-78.

    CAS  Article  Google Scholar 

  8. 8.

    A. Márquez-Herrera, J.L. Fernandez-Muñoz, M. Zapata-Torres, M. Melendez-Lira, P. Cruz-Alcantara: Surf. Coat. Technol. 2014, vol. 254, pp. 433–39.

    Article  Google Scholar 

  9. 9.

    I. Campos, M. Palomar, A. Amador, R. Ganem, J. Martinez: Surf. Coat. Technol. 2006, vol. 201, pp. 2438–42.

    CAS  Article  Google Scholar 

  10. 10.

    I. Campos, M. Palomar-Pardavé, A. Amador, C. VillaVelázquez, J. Hadad: Appl. Surf. Sci. 2007, vol. 253, pp. 9061–66.

    CAS  Article  Google Scholar 

  11. 11.

    Y. Kayali, A. Büyüksagis, Y. Yalçin: Met. Mater. Int. 2013, vol. 19, pp. 1053–61.

    CAS  Article  Google Scholar 

  12. 12.

    I. Mejía-Caballero, M. Palomar-Pardavé, J. Martínez Trinidad, M. Romero-Romo, R. PérezPasten-Borja, L. Lartundo-Rojas, C. López- García, and I. Campos-Silva: Surf. Coat. Technol. 2015, vol. 280, pp. 384–95.

    Article  Google Scholar 

  13. 13.

    I. Mejía-Caballero, J. Martínez-Trinidad, M. Palomar-Pardavé, M. Romero-Romo, H. Herrera-Hernández, O. Herrera-Soria, I. Campos-Silva: J. Mater. Eng. Perform. 2014, vol. 23, pp. 2809-18.

    Article  Google Scholar 

  14. 14.

    I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, M.A. Doñu-Ruiz, D. Bravo-Bárcenas, C. Tapia-Quintero, M.Y. Jiménez-Reyes: Surf. Coat. Technol. 2010, vol. 205, pp. 403-12.

    CAS  Article  Google Scholar 

  15. 15.

    I. Campos-Silva, G.A. Rodríguez-Castro, E. J. Mittemeijer, M A. Somers: Thermochemical Surface Engineering of Steels: Improving Materials Performance, 1st ed., Woodhead, Cambridge UK, 2015, pp. 695-97.

    Google Scholar 

  16. 16.

    V. Randle, Q. Engler: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, 2nd ed., CRC Press, New York, 2000, pp. 258–59.

    Google Scholar 

  17. 17.

    K. Pawlik: Phys. Status Solidi B, 1986, vol. 134 (2), pp. 477-83.

    Article  Google Scholar 

  18. 18.

    A. G. Von Matuschka: Boronizing, 1st Ed., Carl Hanser Verlag, Germany, 1980, pp. 48-54.

    Google Scholar 

  19. 19.

    C. Martini, G. Palombarini, M. Carbucicchio: J. Mater. Sci. 2004, vol. 39, pp. 933– 37.

    CAS  Article  Google Scholar 

  20. 20.

    G. Palombarini, M. Carbucicchio: J. Mater. Sci. Lett. 1987, vol. 6, pp. 415-16.

    CAS  Article  Google Scholar 

  21. 21.

    M. Carbucicchio, G. Palombarini: J. Mater. Sci. Lett. 1987, vol. 6, pp. 1147-49.

    CAS  Article  Google Scholar 

  22. 22.

    J. Zhong, W. Qin, X. Wang, E. Medvedovski, J. A. Szpunar, K. Guan: Metall. Mater. Trans. A, 2019, vol. 50, pp. 58–62.

    Article  Google Scholar 

  23. 23.

    R. A. Buchanan, E. E. Stansbury: Handbook of environmental degradation of materials. Delmar, New York, 2015, pp. 81-103.

    Google Scholar 

  24. 24.

    G. Rosas-Becerra, I. Mejía-Caballero, J. Martínez-Trinidad, M. Palomar-Pardavé, M. Romero-Romo, R. Pérez-Pasten-Borja, I. Campos-Silva: J. Mater. Eng. Perform. 2017, vol. 26, pp. 704-14.

    CAS  Article  Google Scholar 

  25. 25.

    S. Marcelin, N. Pébère, S. Régnier: Electrochim. Acta, 2013, vol. 87, pp. 32–40.

    CAS  Article  Google Scholar 

  26. 26.

    H. Feng, Z. Jiang, H. Li, P. Lu, S. Zhang, H. Zhu, B. Zhang, T. Zhang, D. Xu, Z. Chen: Corros. Sci. 2018, vol. 144, pp. 288–300.

    CAS  Article  Google Scholar 

  27. 27.

    J. Wang, Y. Cui, J. Bai, N. Dong, Y. Liu, C. Zhang, P. Han: Mater. Lett. 2019, vol. 252, pp. 60–3.

    CAS  Article  Google Scholar 

  28. 28.

    K. Selvam, J. Saini, G. Perumal, A. Ayyagari, R. Salloom, R. Mondal, S. Mukherjee, H. S. Grewal, H. S. Arora: Tribol. Int. 2019, vol. 134, pp. 77–86.

    CAS  Article  Google Scholar 

  29. 29.

    P. Goeuriot, R. Fillit, F. Thevenot, J. H. Driver, H. Bruyas: Mat. Sci. Eng. 1982, vol. 55, pp. 9–19.

    CAS  Article  Google Scholar 

  30. 30.

    A.M. Delgado-Brito, D. López-Suero, A. Ruiz-Ríos, R.A. García-León, J. Martínez-Trinidad, J. Oseguera-Peña, I. Campos-Silva: Ceram. Int. 2019, vol. 45, pp. 7767–77.

    CAS  Article  Google Scholar 

  31. 31.

    A.K. Sinha: Heat Treating 4 ASM Handbook, ASM international, Cleveland, 1990.

    Google Scholar 

  32. 32.

    G. K. Kariofillis, G. E. Kiourtsidis, D. N. Tsipas: Surf. Coat. Technol. 2006, vol. 201 pp. 19-24.

    CAS  Article  Google Scholar 

  33. 33.

    J. Ptacinova, M. Drienovsky, M. Palcut, R. Cicka, M. Kusy, M.Hudakova: Kovove Materialy, 2015, vol. 53, pp. 175-86.

    CAS  Google Scholar 

Download references


The authors like to thank to the research Grant 20200695 of the Instituto Politécnico Nacional. I. M-C. M.P-P. M.R-R. E. R-C. L. L-R. and I. C-S. would like to thank the SNI for the distinction of their membership and the stipend received.

Author information



Corresponding author

Correspondence to I. Campos-Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 13, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 660 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mejía-Caballero, I., Escobar-Martínez, C., Palomar-Pardavé, M. et al. On the Corrosion Mechanism of Borided X12CrNiMoV12-3 Steel Immersed in a Neutral Aqueous Solution Containing Chloride and Sulfate Ions. Metall Mater Trans A (2020). https://doi.org/10.1007/s11661-020-05869-z

Download citation