Role of Random and Coincidence Site Lattice Grain Boundaries in Liquid Metal Embrittlement of Iron (FCC)-Zn Couple

Abstract

Liquid metal embrittlement (LME) has frequently been reported in various systems: Cu-Bi, Ni-Bi, Al-Ga, and Fe-Zn for more than 60 years. Although advances have been made in understanding the phenomenon, the role of grain boundary (GB) type and characteristics in LME has remained unclear. The present work shows that liquid metal penetration only occurs in random GBs, where its propagation path is a function of misorientation angle (θ) and stress component perpendicular to GB plane. In contrast, low-Σ coincidence site lattice (CSL) boundaries: Σ3 (θ = 60 deg) and Σ5 to 9 (~ θ = 40 deg) resist LME, even at the maximum stress component. Triple junctions of CSL and random GB block liquid metal penetration by modifying of the random GB misorientation angle. These findings provide insights to employ grain boundary engineering techniques to increase population of CSLs over random GBs and, hence, mitigate LME.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    K. Sadananda and A.K. Vasudevan: Metall. Mater. Trans. A, 2011, vol. 42, pp. 279–95.

    Article  Google Scholar 

  2. 2.

    P.J.L. Fernandes and D.R.H. Jones: Int. Mater. Rev., 2014, vol. 42, pp. 251–61.

    Article  Google Scholar 

  3. 3.

    N. Winzer, A. Atrens, G. Song, E. Ghali, W. Dietzel, K.U. Kainer, N. Hort, and C. Blawert: Adv. Eng. Mater., 2005, vol. 7, pp. 659–93.

    CAS  Article  Google Scholar 

  4. 4.

    E.E. Glickman: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 250–66.

    Article  Google Scholar 

  5. 5.

    E. Perreiro-Lopez, W. Ludwig, D. Bellet, and C. Lemaignan: Acta Mater., 2006, vol. 54, pp. 4307–16.

    Article  Google Scholar 

  6. 6.

    E. Perreiro-Lopez, W. Ludwig, and D. Bellet: Acta Mater., 2004, vol. 52, pp. 321–32.

    Article  Google Scholar 

  7. 7.

    H. Nam and D.J. Srolovitz: Acta Mater., 2009, vol. 57, pp. 1546–53.

    CAS  Article  Google Scholar 

  8. 8.

    M. Naderi, M. Peterlechner, E. Schafler, S. V Divinski, and G. Wilde: Acta Mater., 2015, vol. 99, pp. 196–205.

    CAS  Article  Google Scholar 

  9. 9.

    W. Ludwig and D. Bellet: Acta Mater., 2005, vol. 53, pp. 151–62.

    CAS  Article  Google Scholar 

  10. 10.

    G. Duscher, M.F. Chisholm, U. Alber, and M. Rühle: Nat. Mater., 2004, vol. 3, pp. 621–6.

    CAS  Article  Google Scholar 

  11. 11.

    R. Schweinfest, A.T. Paxton, and M.W. Finnis: Nature, 2004, vol. 432, pp. 1008–11.

    CAS  Article  Google Scholar 

  12. 12.

    L. Klinger and E. Rabkin: Acta Mater., 2007, vol. 55, pp. 4689–98.

    CAS  Article  Google Scholar 

  13. 13.

    J. Luo, H. Cheng, K. Meshinchi-Asl, C.J. Kiely, and M.P. Harmer: Science, 2011, vol. 1730, pp. 1730–34.

    Article  Google Scholar 

  14. 14.

    J. Luo: Corrosion, 2015, vol. 72, pp. 897–910.

    Article  Google Scholar 

  15. 15.

    C. Beal, X. Kleber, and M. Bouzekri: Scr. Mater., 2012, vol. 66, pp. 1030–3.

    CAS  Article  Google Scholar 

  16. 16.

    M.H. Razmpoosh, E. Biro, D.L. Chen, F. Goodwin, and Y. Zhou: Mater. Charact., 2018, vol. 145, pp. 627–33.

    CAS  Article  Google Scholar 

  17. 17.

    M.H. Razmpoosh, A. Macwan, E. Biro, D.L. Chen, Y. Peng, F. Goodwin, and Y. Zhou: Mater. Des., 2018, vol. 155, pp. 375–83.

    CAS  Article  Google Scholar 

  18. 18.

    R.C. Hugo and R.G. Hoagland: Acta Mater., 2000, vol. 48, pp. 1949–57.

    CAS  Article  Google Scholar 

  19. 19.

    M. Rajagopalan, M.A. Bhatia, M.A. Tschopp, D.J. Srolovitz, and K.N. Solanki: Acta Mater., 2014, vol. 73, pp. 312–25.

    CAS  Article  Google Scholar 

  20. 20.

    A.R.C. Westwood and M.H. Kamdar: Philos. Mag., 1963, vol. 8, pp. 787–804.

    CAS  Article  Google Scholar 

  21. 21.

    N.S. Stoloff and T.L. Johnston: Acta Metall., 1963, vol. 11, pp. 251–6.

    CAS  Article  Google Scholar 

  22. 22.

    P. Gordon and H.H. An: Metall. Trans. A, 1982, vol. 13, pp. 457–72.

    Article  Google Scholar 

  23. 23.

    M.A. Krishtal: Sov. Phys. Doklady, 15: 614 (1970)

    Google Scholar 

  24. 24.

    L. Cho, H. Kang, C. Lee, and B.C. De Cooman: Scr. Mater., 2014, vol. 90, pp. 25–8.

    Article  Google Scholar 

  25. 25.

    C.W. Lee, W.S. Choi, L. Cho, Y.R. Cho, and B.C. De Cooman: ISIJ Int., 2015, vol. 55, pp. 264–71.

    CAS  Article  Google Scholar 

  26. 26.

    S. Namilae, B. Radhakrishnan, and J.R. Morris: Model. Simul. Mater. Sci. Eng.

  27. 27.

    H.S. Nam and D.J. Srolovitz: Phys. Rev. Lett., 2007, vol. 99, pp. 1–4.

    Article  Google Scholar 

  28. 28.

    M.H. Razmpoosh, A. Macwan, F. Goodwin, E. Biro, Y. Zhou: Materialia (2020). 10.1016/j.mtla.2020.100668.

    Article  Google Scholar 

  29. 29.

    M.H. Razmpoosh, A. Macwan, F. Goodwin, E. Biro, and Y. Zhou: Mater. Lett., 2020, vol. 267, p. 127511.

    CAS  Article  Google Scholar 

  30. 30.

    A. Jaatinen, C.V Achim, K.R. Elder, and T. Ala-Nissila: http://arxiv.org/abs/1006.5405.

  31. 31.

    Q. Zhu, A. Samanta, B. Li, R.E. Rudd, and T. Frolov: Nat. Commun. (2018) 10.1038/s41467-018-02937-2.

    Article  Google Scholar 

  32. 32.

    P.A. Rehbinder and E.D. Shchukin: Prog. Surf. Sci. (1972), 10.1016/0079-6816(72)90011-1.

    Article  Google Scholar 

  33. 33.

    33 H. Kang, L. Cho, C. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2885–905.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the International Zinc Association in Durham, NC, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and ArcelorMittal Dofasco Inc. in Hamilton, Canada for providing the support to carry out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. H. Razmpoosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 18, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Razmpoosh, M.H., Macwan, A., Goodwin, F. et al. Role of Random and Coincidence Site Lattice Grain Boundaries in Liquid Metal Embrittlement of Iron (FCC)-Zn Couple. Metall Mater Trans A 51, 3938–3944 (2020). https://doi.org/10.1007/s11661-020-05857-3

Download citation