Critical Properties and Magnetocaloric Effect in La0.7Ba0.3Mn0.8Ti0.2O3 Ceramic


In this work, critical behavior, and magnetocaloric effect, as well as the relationship between these characteristics in polycrystalline sample La0.7Ba0.3Mn0.8Ti0.2O3 has been studied in detail. The positive value of the slope of Arrott plots exhibits that the magnetic phase transition of this sample is of a second order at Curie temperature of 96 K. The critical exponents β, γ, and δ have been determined using various ways including the modified Arrott plots, the Kouvel–Fisher plots, and the critical isotherm analysis. Interestingly, the experimental critical exponent values were β = 0.349 ± 0.002, γ = 1.350 ± 0.033, and δ = 4.868 ± 0.002, which are close to those deduced for the 3D-Heisenberg model below the Curie temperature and for the 3D-XY model above it. Additionally, the ferromagnetic interaction in La0.7Ba0.3Mn0.8Ti0.2O3 was found to be at the borderline of the long-range and short-range magnetic coupling, which was confirmed through the exchange distance decaying of \( J\left( r \right)\sim r^{ - 4.9} \). Moreover, the magnetocaloric characteristics of La0.7Ba0.3Mn0.8Ti0.2O3 were consistent with the analysis of critical behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Roger H. Mitchell: Perovskites, Modern and Ancient, Almaz Press, Ontario, Canada, 2002.

    Google Scholar 

  2. 2.

    M. H. Phan and S. C. Yu: J. Magn. Magn. Mater., 2007, vol. 308, pp. 325-40.

    CAS  Article  Google Scholar 

  3. 3.

    L. T. T. Ngan, P. H. Nam, N. V. Dang, L. H. Nguyen, P. T. Phong: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3466-73.

    Article  Google Scholar 

  4. 4.

    C. Zener: Phys. Rev. Lett., 1951, vol. 82, pp 403-05.

    CAS  Google Scholar 

  5. 5.

    M.B. Salamon and P. Lin: Phys. Rev. Lett., 2002, vol. 88, art. no. 197203.

  6. 6.

    E. Dagotto, T. Hotta, A. Moreo: Phys. Rep., 2001, vol. 344, pp. 1-153

    CAS  Article  Google Scholar 

  7. 7.

    P. Nisha, S. S. Pillai, M. R. Varma, K. G. Suresh: Solid State Sci., 2012, vol. 14, pp. 40-47.

    CAS  Article  Google Scholar 

  8. 8.

    T. L. Phan, P. Q. Thanh, N. H. Sinh, K. W. Lee, S. C. Yu: Curr. Appl. Phys., 2011, vol. 11, pp. 830-33.

    Article  Google Scholar 

  9. 9.

    K. Kubo and N. Ohata: J. Phys. Soc. Jpn., 1972, vol. 33, pp. 21-32.

    CAS  Article  Google Scholar 

  10. 10.

    Y. Motome and N. Furulawa: J. Phys. Soc. Jpn., 2000, vol. 69, pp. 3785-88.

    CAS  Article  Google Scholar 

  11. 11.

    Y. Motome and N. Furulawa: J. Phys. Soc. Jpn., 2001, vol. 70, pp. 1487-90.

    CAS  Article  Google Scholar 

  12. 12.

    S. Taran, B.K. Chaudhuri, S. Chatterjee, H.D. Yang, S. Neeleshwar, and Y.Y. Chen: J. Appl. Phys., 2005, vol. 98, art. no. 103903.

  13. 13.

    B. Padmanabhan, H.L. Bhat, S. Elizabeth, S. Rößler, U.K. Rößler, K. Dörr, and K.H. Müller: Phys. Rev. B, 2007, vol. 75, art. no. 024419.

  14. 14.

    T.L. Phan, Y.D. Zhang, P. Zhang, T.D. Thanh, and S.C. Yu: J. Appl. Phys., 2012, vol. 112, art. no. 093906.

  15. 15.

    M. Ziese: J. Phys.: Condens. Matter., 2001, vol. 13, pp. 2919-34.

    CAS  Google Scholar 

  16. 16.

    P. T. Phong, L. T. T. Ngan, L. V. Bau, N. M. An, L. T. H. Phong, N. V. Dang, I. J. Lee: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 385-94.

    Article  Google Scholar 

  17. 17.

    L. Chen, J. H. He, Y. Mei, Y. Z. Cao, W. W. Xia, H. F. Xu, Z. W. Zhu, Z. A. Xu: Physica B, 2009, vol. 404, pp. 1879-82.

    CAS  Article  Google Scholar 

  18. 18.

    D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, and J.F. Mitchell: Phys. Rev. Lett., 2009, vol. 89, art. no. 227202.

  19. 19.

    H. S. Shin, J. E. Lee, Y. S. Nam, H. L. Ju, C. W. Park: Solid State Commun., 2001, vol. 118, pp. 377-80.

    CAS  Article  Google Scholar 

  20. 20.

    A. Dhahri, M. Jemmali, M. Hussein, E. Dhahri, A. Koumina, E. K. Hlil: J. Alloys Comp., 2015, vol. 618, pp. 788-94.

    CAS  Article  Google Scholar 

  21. 21.

    C.E. Ancona-Torres, N. Pryds, L.T. Kuhn, C.R.H. Bahl, and S. Linderoth: J. Appl. Phys., 2010, vol. 108, art. no. 073914.

  22. 22.

    F. Ben Jemaa, S.H. Mahmood, M. Ellouze, E.K. Hlil, and F. Halouani: Ceram. Int., 2015, vol. 41, pp. 8191–8202.

  23. 23.

    V. Punith Kumar, V. Dayal, R. L. Hadimani, R. N. Bhowmik, D. C. Jiles: J. Mater. Sci., 2015, vol. 50, pp. 3562-75.

    CAS  Article  Google Scholar 

  24. 24.

    T. A. Ho, M. H. Phan, N. X. Phuc, V. D. Lam, T. L. Phan, S. C. Yu: J. Electron. Mater., 2016, vol. 45, pp. 2508-15.

    CAS  Article  Google Scholar 

  25. 25.

    L. V. Bau, N. X. Phuc, T. L. Phan, S. C. Yu, P. Nordblad: J. Appl. Phys., 2006, vol. 99, pp. 08Q306

    Article  Google Scholar 

  26. 26.

    A. Gasmi, M. Boudard, S. Zemni, F. Hippert, and M. Oumezzine: J. Phys. D: Appl. Phys., 2009, vol. 42, art. no. 225408.

  27. 27.

    H. M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65-71.

    CAS  Article  Google Scholar 

  28. 28.

    P. T. Phong, L. V. Bau, L. C. Hoan, D. H. Manh, N. X. Phuc, I. J. Lee: J Alloys Comp., 2016, vol. 656, pp. 920-28.

    CAS  Article  Google Scholar 

  29. 29.

    D. Kumar and A. K. Singh: J. Magn. Magn. Mater., 2019, vol. 469, pp. 264-73.

    CAS  Article  Google Scholar 

  30. 30.

    A. Arrott: Phys. Rev., 1957, vol. 108, pp. 1394-96.

    CAS  Article  Google Scholar 

  31. 31.

    B. K. Banerjee: Phys. Lett., 1964, vol. 12, pp. 16-17.

    Article  Google Scholar 

  32. 32.

    H. Eugene Stanley: Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, 1971.

  33. 33.

    A. Arrott and J. E. Noakes: Phys. Rev. Lett., 1967, vol. 19, 786-89.

    CAS  Article  Google Scholar 

  34. 34.

    P. T. Phong, L. T. T. Ngan, L. V. Bau, N. X. Phuc, P. H. Nam, L. T. H. Phong, N. V. Dang, I. J. Lee: J. Magn. Magn. Mater., 2019, vol. 475, pp. 374-81.

    CAS  Article  Google Scholar 

  35. 35.

    M.H. Phan, G.T. Woods, A. Chaturvedi, S. Stefanoski, G.S. Nolas, and H. Srikanth: Appl. Phys. Lett., 2008, vol. 93, art. no. 252505.

  36. 36.

    J. S. Kouvel, M. E. Fisher: Phys. Rev., 1964, vol. 136, pp. A1626-A1632.

    Article  Google Scholar 

  37. 37.

    B. Widom: J. Chem. Phys., 1964, vol. 41, pp. 1633-34.

    Article  Google Scholar 

  38. 38.

    V. Franco, J. S. Blázquez, A. Conde: Appl. Phys. Lett., 2006, vol. 89, pp. 222512.

    Article  Google Scholar 

  39. 39.

    M. E. Fisher, S. K. Ma, B. G. Nickel: Phys Rev Lett., 1972, vol. 29, pp. 917-20.

    Article  Google Scholar 

  40. 40.

    S.F. Fischer, S.N. Kaul, and H. Kronmuller: Phys. Rev. B, 2002, vol. 65, art. no. 064443.

  41. 41.

    W.J. Jiang, X.Z. Zhou, G. Williams, Y. Mukovskii, and K. Glazyrin: Phys. Rev. B, 2008, vol. 77, art. no. 064424.

  42. 42.

    X. Zhu, Y. Sun, X. Luo et al.: J. Magn. Magn. Mater., 2010, vol. 322, pp. 242-46.

    CAS  Article  Google Scholar 

  43. 43.

    S. N. Kaul: J. Magn. Magn. Mater., 1985, vol. 53, pp. 5-53.

    CAS  Article  Google Scholar 

  44. 44.

    D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, and J.F. Mitchell: Phys. Rev. Lett., 2002, vol. 89, art. no. 227202.

Download references


This work was supported by the National Foundation for Science and Technology under Grant No. 103.02-2017.57.

Author information



Corresponding author

Correspondence to P. T. Phong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 6, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bau, L.V., Morán, O., Tho, P.T. et al. Critical Properties and Magnetocaloric Effect in La0.7Ba0.3Mn0.8Ti0.2O3 Ceramic. Metall Mater Trans A 51, 1924–1932 (2020).

Download citation