The Role of Silicon Morphology in the Electrical Conductivity and Mechanical Properties of As-Cast B319 Aluminum Alloy


The enhanced performance of automotive B319 aluminum alloys can be realized via the improvement of both strength and conductivity. Yet, vastly dissimilar mechanisms are responsible for each property, and the incomplete understanding of their respective dominant microstructural features impedes effective alloy design. In this study, permanent mold cast B319 alloy was systematically produced with total solidification rates between 0.14 and 5.89 °C s−1 and strontium contents up to 300 ppm to isolate their respective effects on material properties. The as-cast samples were characterized by their dendritic structure, eutectic silicon morphology, porosity content, hardness, tensile strength, ductility, and electrical conductivity. With increasing solidification rate, the refinement of microstructure considerably improved all mechanical properties analyzed. Nonetheless, these properties were found to be independent of strontium content, attributed to the role of the coarse and brittle intermetallic phases in fracture initiation. In contrast, conductivity was minimally affected by solidification rate in the unmodified condition. However, the synergistic silicon modification promoted by increasing both solidification rate and strontium enhanced conductivity by up to 3 pct IACS. The correlations developed with the quantified silicon characteristics establish this phase as dominant in the conductivity of B319 alloy, and they elucidate opportunities for the further enhancement of automotive materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

Additional raw/processed data required to reproduce these findings cannot be shared at this time, as the data also form part of an ongoing study.


  1. 1.

    W. Callister and G. Rethwisch: Materials Science and Engineering: An Introduction, 9th ed., Wiley, New York, 2013.

    Google Scholar 

  2. 2.

    [2] R. Lumley, N. Deeva, R. Larsen, J. Gembarovic and J. Freeman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1074-1086.

    Article  CAS  Google Scholar 

  3. 3.

    [3] F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E. Pinatel and P. Uggowitzer: Mater. Sci. Eng. A, 2013, vol. 560, pp. 481-491.

    Article  CAS  Google Scholar 

  4. 4.

    [4] M. Mulazimoglu, R. Drew and J. Gruzleski: Metall. Trans. A, 1989, vol. 20A, pp. 383-389.

    Article  CAS  Google Scholar 

  5. 5.

    [5] M. Mulazimoglu, R. Drew and J. Gruzleski: J. Mater. Sci. Lett., 1989, vol. 8, pp. 297-300.

    Article  CAS  Google Scholar 

  6. 6.

    [6] H. Wang and S. Lo: J. Mater. Sci. Lett., 1996, vol. 15, pp. 369-371.

    CAS  Google Scholar 

  7. 7.

    [7] R. Lumley, I. Polmear, H. Groot and J. Ferrier: Scripta Mater., 2008, vol. 58, pp. 1006-1009.

    Article  CAS  Google Scholar 

  8. 8.

    [8] E. Vandersluis and C. Ravindran: J. Mater. Sci., 2019, vol. 54, no. 5, pp. 4325-4339.

    Article  CAS  Google Scholar 

  9. 9.

    [9] E. Vandersluis and C. Ravindran: J. Mater. Eng. Perform., 2018, vol. 27, no. 3, pp. 1109-1121.

    Article  CAS  Google Scholar 

  10. 10.

    [10] E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa and R. MacKay: Mater. Sci. Eng. A, 2015, vol. 648, pp. 401-411.

    Article  CAS  Google Scholar 

  11. 11.

    [11] R. Sharma: Phase Transformations in Materials, CBS Publishers and Distributors, New Delhi, 2002.

    Google Scholar 

  12. 12.

    [12] E. Vandersluis and C. Ravindran: JOM, 2019, vol. 71, pp. 2072-2077.

    Article  CAS  Google Scholar 

  13. 13.

    [13] G. Sigworth: AFS Trans., 2008, vol. 19, pp. 115-139.

    Google Scholar 

  14. 14.

    [14] E. Vandersluis, D. Sediako, C. Ravindran, A. Elsayed and G. Byczynski: J. Alloys Compd., 2018, vol. 736, pp. 172-180.

    Article  CAS  Google Scholar 

  15. 15.

    [15] M. Makhlouf and H. Guthy: J. Light Met., 2001, vol. 1, pp. 199-218.

    Article  Google Scholar 

  16. 16.

    S. Hegde, K. NarayanPrabhu: J. Mater. Sci., 2008, vol. 43, pp. 3009-3027.

    Article  CAS  Google Scholar 

  17. 17.

    [17] F. Zu and X. Li: China Foundry, 2014, vol. 11, no. 4, pp. 287-295.

    Google Scholar 

  18. 18.

    [18] S. D. McDonald, A. K. Dahle, J. A. Taylor and D. H. StJohn: Metall. Mater. Trans. A, 2004, vol. 35, no. 6, pp. 1829-1837.

    Article  Google Scholar 

  19. 19.

    [19] K. Nogita and A. Dahle: Mater. Trans., 2001, vol. 42, no. 3, pp. 393-396.

    Article  CAS  Google Scholar 

  20. 20.

    [20] S. Joseph and S. Kumar: Mater. Sci. Eng. A, 2013, vol. 588, pp. 111-124.

    Article  CAS  Google Scholar 

  21. 21.

    [21] M. Hafiz and T. Kobayashi: Scr. Metall. Mater., 1994, vol. 30, pp. 475-480.

    Article  CAS  Google Scholar 

  22. 22.

    M. Zamani: Al-Si Cast Alloys—Microstructure and Mechanical Properties at Ambient and Elevated Temperatures, JTH Dissertation Series, Jönköping, 2015.

  23. 23.

    [23] S. Shaha, F. Czerwinski, W. Kasprzak, J.Friedman and D. Chen: Mater. Sci. Eng. A, 2016, vol. 657, pp. 441-452.

    Article  CAS  Google Scholar 

  24. 24.

    [24] M. Riestra, E. Ghassemali, T. Bogdanoff and S. Seifeddine, Mater. Sci. Eng. A, 2017, vol. 703, pp. 270-279.

    Article  CAS  Google Scholar 

  25. 25.

    K. NarayanPrabhu and B. Ravishankar: Mater. Sci. Eng. A, 2003, vol. 360, pp. 293-298.

    Article  CAS  Google Scholar 

  26. 26.

    [26] M. Mulazimoglu, R. Drew and J. Gruzleski: Metall. Trans. A, 1987, vol. 18A, pp. 941-947.

    Article  CAS  Google Scholar 

  27. 27.

    [27] B. Closset, K. Pirie and J. Gruzleski: AFS Trans., 1984, vol. 92, pp. 123-133.

    CAS  Google Scholar 

  28. 28.

    [28] H. Oger, B. Closset and J. Gruzleski: AFS Trans., 1983, vol. 91, pp. 17-20.

    CAS  Google Scholar 

  29. 29.

    [29] M. Djurdjevic, H. Jiang and J. Sokolowski: Mater. Charact., 2001, vol. 46, pp. 31-38.

    Article  CAS  Google Scholar 

  30. 30.

    E. Vandersluis, N. Prabaharan, and C. Ravindran: Int. J. Metalcast., 2020, vol. 14 (1), pp. 37–46.

    Article  CAS  Google Scholar 

  31. 31.

    [31] E. Vandersluis and C. Ravindran: Trans. Indian Inst. Met., 2018, vol. 71, pp. 1231-1236.

    Article  Google Scholar 

  32. 32.

    [32] S. Eguskiza, A. Nikla, A. I. Fernández-Calvo, F. Santos and M. Djurdjevic: Int. J. Metalcast, 2015, vol. 9, pp. 43-50.

    Article  CAS  Google Scholar 

  33. 33.

    E. Vandersluis, C. Ravindran: Metallogr. Microstruct. Anal., 2017, vol. 6, pp. 89-94.

    Article  CAS  Google Scholar 

  34. 34.

    [34] J. Davis, Ed.: ASM Specialty Handbook: Aluminum and aluminum alloys, ASM International, Materials Park, 1993.

    Google Scholar 

  35. 35.

    ASTM B557: Standard Test Methods for Tension Testing Wrought and Cast Aluminum, ASTM International, West Conshohocken, 2014.

  36. 36.

    ASTM E1004: Standard Test Method for Determining Electrical Conductivity Using the Electromagnetic (Eddy Current) Method, ASTM International, West Conshohocken, 2017.

  37. 37.

    [37] M. Easton, C. Davidson and D. StJohn: Mater. Trans., 2011, vol. 52, no. 5, pp. 842-847.

    Article  CAS  Google Scholar 

  38. 38.

    [38] N. Tiedje, J. Taylor and M. Easton: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4846-4858.

    Article  CAS  Google Scholar 

  39. 39.

    A. Knuutinen, K. Nogita, S. McDonald. J. Light Met., 2001, vol. 1, pp. 241-249.

    Article  Google Scholar 

  40. 40.

    [40] X. Bian, Z. Zhang and X. Liu: Mater. Sci. Forum, 2000, vols. 331-337, pp. 361-366.

    Article  Google Scholar 

  41. 41.

    [41] E. Ghassemali, M. Riestra, T. Bogdanoff, B. Kumar and S. Seifeddine: Procedia Eng., 2017, vol. 207, pp. 19-24.

    Article  CAS  Google Scholar 

  42. 42.

    [42] N. Fatahalla, M. Hafiz and M. Abdulkhalek: J. Mater. Sci., 1999, vol. 34, pp. 3555-3564.

    Article  Google Scholar 

  43. 43.

    [43] M. Zamani and S. Seifeddine: Int. J. Metalcast., 2016, vol. 10, pp. 457-465.

    Article  CAS  Google Scholar 

  44. 44.

    [44] A. Samuel, H. Doty, S. Valtierra, and F. Samuel: Int. J. Metalcast., 2017, vol. 11, pp. 475-493.

    Article  CAS  Google Scholar 

  45. 45.

    [45] T. Anderson: Fracture Mechanics: Fundamentals and Applications, 3rd ed., Taylor & Francis Group, Boca Raton, 2005.

    Book  Google Scholar 

  46. 46.

    A. Mohamed, F. Samuel and S. Alkahtani: Mater. Sci. Eng. A, 2013, vol. 577, pp. 64-72.

    Article  CAS  Google Scholar 

  47. 47.

    [47] A. Lombardi, F. D’Elia, C. Ravindran, B. Murty and R. MacKay: Trans. Indian Inst. Met., 2011, vol. 64, pp. 7-11.

    Article  CAS  Google Scholar 

  48. 48.

    [48] S. Shabestari and S. Ghodrat: Mater. Sci. Eng. A, 2007, vol. 467, pp. 150-158.

    Article  CAS  Google Scholar 

  49. 49.

    [49] D. Argo, R. Drew and J. Gruzleski: AFS Trans., 1987, vol. 95, pp. 455-464.

    CAS  Google Scholar 

  50. 50.

    L. Arnberg and L. Bäckerud: Solidification Characteristics of Aluminum Alloys Volume 3: Dendrite Coherency, American Foundrymen’s Society, Inc., Des Plaines, 1996.

  51. 51.

    [51] J. Li, M. Albu, F. Hofer and P. Schumacher: Acta Mater., 2015, vol. 83, pp. 187-202.

    Article  CAS  Google Scholar 

  52. 52.

    [52] J. Barrirero, J. Li, M. Engstler, N. Ghafoor, P. Schumacher, M. Odén and F. Mücklich: Scr. Mater., 2016, vol. 117, pp. 16-19.

    Article  CAS  Google Scholar 

  53. 53.

    [53] E. Vandersluis, D. Sediako, P. Emadi, C. Ravindran, A. Elsayed and G. Byczynski: J. Appl. Crystallogr., 2018, vol. 51, pp. 1141-1150.

    Article  CAS  Google Scholar 

  54. 54.

    [54] J. Gruzleski: Microstructure Development During Metalcasting, American Foundrymen’s Society, Inc., Des Plaines, 2000.

    Google Scholar 

  55. 55.

    [55] V. Páramo, R. Colás, E. Velasco and S. Valtierra: J. Mater. Eng. Perform., 2000, vol. 9, pp. 616-622.

    Article  Google Scholar 

  56. 56.

    [56] E. Ogris, A. Wahlen, H. Lüchinger and P. Uggowitzer: J. Light Met., 2002, vol. 2, pp. 263-269.

    Article  Google Scholar 

  57. 57.

    [57] R. Wang and W. Lu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2799-2809.

    Article  CAS  Google Scholar 

  58. 58.

    [58] X. Jian, C. Xu, T. Meek and Q. Han: AFS Trans., 2005, vol. 113, pp. 131-138.

    CAS  Google Scholar 

Download references


The authors are thankful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support of this project and for the award of the Canada Graduate Scholarship to Eli Vandersluis (Grant Number CGSD3-489708-2016). The authors are grateful to Alan Machin, Michael Rinaldi, Qiang Li, and the members of the Centre for Near-net-shape Processing of Materials (CNPM) at Ryerson University for experimental assistance and support.

Author information



Corresponding author

Correspondence to Eli Vandersluis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 16, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vandersluis, E., Emadi, P., Andilab, B. et al. The Role of Silicon Morphology in the Electrical Conductivity and Mechanical Properties of As-Cast B319 Aluminum Alloy. Metall Mater Trans A 51, 1874–1886 (2020).

Download citation