Formation of Austenite in Additively Manufactured and Post-Processed Duplex Stainless Steel Alloys

Abstract

The additive manufacturing of duplex stainless steels has been limited by the inability to maintain a balanced ferrite/austenite microstructure. In order to investigate the impact of the complex thermal histories inherent to the additive manufacturing process on austenite fractions and morphology, a laser-based directed energy deposition process was used to fabricate lean (UNS S32101), standard (UNS S32205), and super (UNS S32507) duplex structures. In these structures, the austenite phase fractions ranged from 16.1 ± 1.1 pct in the lean, to 38.5 ± 1.6 pct in the standard, and 58.3 ± 0.1 pct in the super duplex stainless steel grades. While the overall austenite levels were comparable to those found in wrought alloys, the austenite fractions increased with build height as preheating from previously deposited material promoted the ferrite to austenite transformation. Of the austenite morphologies observed in each of the duplex stainless steel grades, intragranular austenite was dominant, comprising between 55 and 76 pct of the austenite present within each build. The intragranular austenite formed during reheating and its formation was enhanced by the presence of submicron inclusions which originated from the powder feedstock and served as heterogenous nucleation sites. After post-process hot isostatic pressing heat treatment, the austenite morphology became more similar in appearance to that observed in the wrought condition. The overall austenite fractions in the post-processed lean (28.2 ± 0.7 pct), standard (57.6 ± 0.2 pct), and super (66.5 ± 0.3 pct) duplex grades increased over their respective as-deposited conditions and became more uniform with changes in build height.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. 1.

    Sandvik Osprey (Neath, UK).

  2. 2.

    Luvak Laboratories (Boylston, US).

  3. 3.

    Thermo-Calc Software (Solna SE).

  4. 4.

    Malvern Panalytical Ltd. (Royston, UK).

  5. 5.

    Quintus Technologies AMD Application Center (Columbus, US).

  6. 6.

    GE Sensing & Inspection Technologies (Cincinnati, US).

  7. 7.

    Volume Graphics, Inc. (Heidelberg, DE).

  8. 8.

    LECO Corporation (Saint Joseph, US).

  9. 9.

    Nikon Corporation (Tokyo, JP).

  10. 10.

    ThermoFisher Scientific (Waltham, US).

  11. 11.

    Oxford Instruments (Abingdon, UK).

  12. 12.

    Malvern Panalytical Ltd. (Royston, UK).

References

  1. 1.

    A. Vinoth-Jebaraj, L. Ajaykumar, C.R. Deepak, and K. V. V. Aditya: J. Adv. Res., 2017, vol. 8, pp. 183–99.

    CAS  Google Scholar 

  2. 2.

    Westinghouse Electric Company: Engineered Safety Features, AP1000 Design Control Document Revision 18, vol. 6, 2010.

  3. 3.

    I. Alvarez-Armas and S. Degallaix-Moreuil, eds.: Duplex Stainless Steels, John Wiley & Sons, New Jersey, 2013.

  4. 4.

    R.N. Gunn: Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead Publishing, 1997.

    Google Scholar 

  5. 5.

    G. Mohammed, M. Ishak, S. Aqida, and H. Abdulhadi: Metals (Basel)., 2017, vol. 7, p. 39.

    Google Scholar 

  6. 6.

    A.J. Ramirez, J.C. Lippold, and S.D. Brandi: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1575–97.

    CAS  Google Scholar 

  7. 7.

    C.M. Garzón and A.J. Ramirez: Acta Mater., 2006, 54(12), pp. 3321–3331.

    Google Scholar 

  8. 8.

    J.W. Elmer, T.A. Palmer, and E.D. Specht: Metall. Mater. Trans. A, 2007, vol. 38, pp. 464–75.

    CAS  Google Scholar 

  9. 9.

    N. Llorca-Isern, H. López-Luque, I. López-Jiménez, and M.V. Biezma: Mater. Charact., 2016, 112, pp. 20–9.

    CAS  Google Scholar 

  10. 10.

    T.H. Chen, K.L. Weng, and J.R. Yang: Mater. Sci. Eng. A, 2002, vol. 338, pp. 259–70.

    Google Scholar 

  11. 11.

    A. Igual-Muñoz, J. García-Antón, J.L. Guiñón, and V. Pérez-Herranz: Corrosion, 2005, vol. 61, pp. 693–705.

    Google Scholar 

  12. 12.

    J.Y. Maetz, T. Douillard, S. Cazottes, C. Verdu, and X. Kléber: Micron, 2016, 84, pp. 43–53.

    CAS  Google Scholar 

  13. 13.

    K.M. Lee, H. Cho, and D.C. Choi: J. Alloys Compd. 1999, 285, 156–161.

    CAS  Google Scholar 

  14. 14.

    R.B. Bhatt, H.S. Kamat, S.K. Ghosal, and P.K. De: JMEPEG, 1999, vol. 8, pp. 591–7.

    CAS  Google Scholar 

  15. 15.

    V. Muthupandi, P. Bala-Srinivasan, S.K. Seshadri, and S. Sundaresan: Mater. Sci. Eng. A, 2003, vol. 358, pp. 9–16.

    Google Scholar 

  16. 16.

    V. Muthupandi, P. Bala-Srinivasan, V. Shankar, S.K. Seshadri, and S. Sundaresan: Mater. Lett., 2005, 59 (18), pp. 2305–2309.

    CAS  Google Scholar 

  17. 17.

    H. Sieurin and R. Sandstrom: Mater. Sci. Eng. A, 2006, vol. 418, pp. 250–6.

    Google Scholar 

  18. 18.

    J.M. Gomez de Salazar, A. Soria, and M.I. Barrena: J. Mater. Sci., 2007, vol. 42, pp. 4892–8.

    CAS  Google Scholar 

  19. 19.

    E.M. Westin: Weld. World, 2010, vol. 54, pp. 308–21.

    Google Scholar 

  20. 20.

    A. Eghlimi, M. Shamanian, and K. Raeissi: Surf. Coat. Technol., 2014, 244, pp. 45–51.

    CAS  Google Scholar 

  21. 21.

    L. Karlsson and J. Börjesson: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 318–23.

    CAS  Google Scholar 

  22. 22.

    Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and C. Zhou: Appl. Surf. Sci., 2017, vol. 404, pp. 110–28.

    CAS  Google Scholar 

  23. 23.

    Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, and J. Li: Corros. Sci., 2012, vol. 65, pp. 472–80.

    CAS  Google Scholar 

  24. 24.

    Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, and Y. Guo: Corros. Sci., 2012, vol. 62, pp. 42–50.

    CAS  Google Scholar 

  25. 25.

    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.

    CAS  Google Scholar 

  26. 26.

    K.D. Ramkumar, D. Mishra, B.G. Raj, M.K. Vignesh, G. Thiruvengatam, S.P. Sudharshan, N. Arivazhagan, N. Sivashanmugam, and A. Maximus: Mater. Des., 2015, vol. 66, pp. 356–65.

    Google Scholar 

  27. 27.

    V.A. Hosseini, S. Wessman, K. Hurtig, and L. Karlsson: Mater. Des., 2016, vol. 98, pp. 88–97.

    CAS  Google Scholar 

  28. 28.

    J. Pekkarinen and V. Kujanpää: Phys. Procedia, 2010, vol. 5, pp. 517–23.

    CAS  Google Scholar 

  29. 29.

    A. Mourad, A. Khourshid, and T. Sharef: Mater. Sci. Eng. A, 2012, vol. 549, pp. 105–13.

    CAS  Google Scholar 

  30. 30.

    Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, and J. Zhang: Appl. Surf. Sci., 2018, vol. 435, pp. 352–66.

    CAS  Google Scholar 

  31. 31.

    J.W. Elmer, S.M. Allen, and T.W. Eagar: Metall. Trans. A, 1989, vol. 20, pp. 2117–31.

    Google Scholar 

  32. 32.

    V.A. Hosseini, K. Hurtig, and L. Karlsson: Mater. Corros., 2017, vol. 68, pp. 405–15.

    CAS  Google Scholar 

  33. 33.

    K.P. Davidson and S. Singamneni: Mater. Manuf. Process., 2016, vol. 31, pp. 1543–55.

    CAS  Google Scholar 

  34. 34.

    K.P. Davidson and S. Singamneni: Jom, 2017, vol. 69, pp. 569–74.

    CAS  Google Scholar 

  35. 35.

    K. Saeidi, L. Kevetkova, F. Lofaj, and Z. Shen: Mater. Sci. Eng. A, 2016, vol. 665, pp. 59–65.

    CAS  Google Scholar 

  36. 36.

    F. Hengsbach, P. Koppa, K. Duschik, M.J. Holzweissig, M. Burns, J. Nellesen, W. Tillmann, T. Tröster, K.-P. Hoyer, and M. Schaper: Mater. Des., 2017, 133, pp. 136–142.

    CAS  Google Scholar 

  37. 37.

    M. Eriksson, M. Lervåg, C. Sørensen, A. Robertstad, B.M. Brønstad, B. Nyhus, R. Aune, X. Ren, and O.M. Akselsen: MATEC Web of Conferences, 2018, vol. 188, pp. 1–8.

    Google Scholar 

  38. 38.

    G. Posch, K. Chladil, and H. Chladil: Weld. World, 2017, vol. 61, pp. 873–82.

    CAS  Google Scholar 

  39. 39.

    ASTM E1019: Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques, ASTM International, West Conshohocken, PA, 2018.

  40. 40.

    ASTM E1097: Standard Guide for Determination of Various Elements by Direct Current Plasma Atomic Emission Spectrometry, ASTM International, West Conshohocken, PA, 2012.

  41. 41.

    ASTM 276: Standard Specification for Stainless Steel Bars and Shapes, West Conshohocken, PA, 2017.

  42. 42.

    L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.

    Google Scholar 

  43. 43.

    N. Saunders and A. Peter-Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier, New York, 1998.

    Google Scholar 

  44. 44.

    H. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  45. 45.

    Z.K. Liu: J. Phase Equilibria Diffus., 2009, vol. 30, pp. 517–34.

    CAS  Google Scholar 

  46. 46.

    ASTM B213: Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013.

  47. 47.

    ASTM B212: Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel, ASTM International, West Conshohocken, PA, 2013.

  48. 48.

    ASTM B527: Standard Test Method for Determination of Tap Density of Metal Powders and Compounds, ASTM International, West Conshohocken, PA, 2015.

  49. 49.

    Z.R. Khayat and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 718, pp. 123–34.

    CAS  Google Scholar 

  50. 50.

    J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit: J. Res. Natl. Inst. Stand. Technol., 2014, vol. 119, pp. 494–528.

    Google Scholar 

  51. 51.

    A. Kisasoz, A. Karaaslan, and Y. Bayrak: Met. Sci. Heat Treat., 2016, vol. 58, pp. 9–12.

    Google Scholar 

  52. 52.

    ASTM E562: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM International, West Conshohocken, PA, 2011.

  53. 53.

    S.D. Meredith, J.S. Zuback, J.S. Keist, and T.A. Palmer: Mater. Sci. Eng. A, 2018, vol. 738, pp. 44–56.

    CAS  Google Scholar 

  54. 54.

    ASTM E975: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM International, West Conshohocken, PA, 2013.

  55. 55.

    T.A. Palmer, J.W. Elmer, and J. Wong: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 159–71.

    CAS  Google Scholar 

  56. 56.

    T.A. Palmer, J.W. Elmer, and S.S. Babu: Mater. Sci. Eng. A, 2004, vol. 374, pp. 307–21.

    Google Scholar 

  57. 57.

    Z. Zhang, H. Jing, L. Xu, Y. Han, G. Li, and L. Zhao: J. Mater. Eng. Perform., 2017, vol. 26, pp. 134–50.

    CAS  Google Scholar 

  58. 58.

    J. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700.

    CAS  Google Scholar 

  59. 59.

    S. Atamert and J.E. King: Zeitschrift für Met., 1991, vol. 82, pp. 230–9.

    CAS  Google Scholar 

  60. 60.

    V. Manvatkar, A. De, and T. DebRoy: Mater. Sci. Technol., 2015, vol. 31, pp. 924–30.

    CAS  Google Scholar 

  61. 61.

    Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and J. Zhang: Appl. Surf. Sci., 2017, 394, pp. 297–314.

    CAS  Google Scholar 

  62. 62.

    Y. Guo, T. Sun, J. Hu, Y. Jiang, L. Jiang, and J. Li: Alloy. Compd., 2016, vol. 658, pp. 1031–40.

    CAS  Google Scholar 

  63. 63.

    A.J. Ramirez, S.D. Brandi, and J.C. Lippold: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 301–13.

    CAS  Google Scholar 

  64. 64.

    Z. Zhang, H. Jing, L. Xu, Y. Han, and L. Zhao: Corros. Sci., 2017, 120, pp. 194–210.

    CAS  Google Scholar 

  65. 65.

    E. Hämäläinen, A. Laitinen, H. Hänninen, and J. Liimatainen: Mater. Sci. Technol., 1997, vol. 13, pp. 103–9.

    Google Scholar 

  66. 66.

    A. Laitinen and H. Hanninen: Corrosion, 1996, vol. 52, pp. 295–306.

    CAS  Google Scholar 

  67. 67.

    B.M. Morrow, T.J. Lienert, C.M. Knapp, J.O. Sutton, M.J. Brand, R.M. Pacheco, V. Livescu, J.S. Carpenter, and G.T. Gray: Metall. Mater. Trans. A, 2018, 49, pp. 3637-3650.

    CAS  Google Scholar 

  68. 68.

    E.C. Bain and H.W. Paxton: Alloying Elements in Steel, American Society for Metals, Metals Park, Ohio, 1966.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Office of Naval Research Manufacturing Technology program and the Applied Research Laboratory’s Institute for Manufacturing and Sustainment Technologies which is funded under the Naval Sea Systems Command (NAVSEA) contract #N00024-12-D-6404. A.D.I. acknowledges the support from the American Welding Society Foundation Research Fellowship. The authors wish to thank the Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D) for the use of their equipment, laboratory facilities, Mr. Jay Tressler for fabrication of the builds, and Ms. Marissa Brennan for completing the X-ray CT scans and the porosity analysis. We also acknowledge Mr. Magnus Ahlfors and Mr. Jim Shipley at Quintus Technologies for performing the hot isostatic pressing and providing helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. A. Palmer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 15, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iams, A.D., Keist, J.S. & Palmer, T.A. Formation of Austenite in Additively Manufactured and Post-Processed Duplex Stainless Steel Alloys. Metall Mater Trans A 51, 982–999 (2020). https://doi.org/10.1007/s11661-019-05562-w

Download citation