In Situ Observation and Phase-Field Modeling of Peritectic Solidification of Low-Carbon Steel

Abstract

In the present study, both in situ experiment and multiphase field modeling are adopted to investigate the peritectic solidification of a low-carbon steel. The results show that the peritectic reaction occurs at the temperature of 3.4 K lower than the equilibrium peritectic temperature, the γ-austenite first nucleates at the δ/L boundary, and then rapidly propagates along the δ/L boundary by the advance of the L/γ/δ triple point till the δ-ferrite is encircled by the γ austenite. The whole peritectic reaction process is very fast, and the measured and predicted average propagation velocity of L/γ/δ triple point along the δ/L boundary are, respectively, 1.36 and 1.09 mm/s. This small difference between the measurement and prediction means that the developed multiphase field model is capable of predicting the peritectic reaction and peritectic transformation during the peritectic solidification process of Fe-C alloy, and the peritectic reaction can be regarded as a solute diffusion-controlled process. With the increase of cooling rate and undercooling, the advancing velocities of L/γ/δ triple point, L/γ interface and γ/δ interface increase, and thus the γ-austenite between the liquid phase and δ phase becomes longer and thicker for the same elapsed time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Xia G, Bernhard C, IIie S, Fuerst C (2011) Steel Res Int 82:230-236

    CAS  Article  Google Scholar 

  2. 2.

    2. K. Matsuura, Y. Itoh and T.Narita: ISIJ Int., 1993, vol. 33, pp. 583-587.

    CAS  Article  Google Scholar 

  3. 3.

    3. P. Presoly, R. Pierer and C. Bernhard: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5377-5388.

    Article  Google Scholar 

  4. 4.

    4. R. Sarkar, A. Sengupta, V. Kumar and S. K. Choudary: ISIJ Int., 2015, vol. 55, pp. 781-790.

    CAS  Article  Google Scholar 

  5. 5.

    5. H. W. Kerr, J. Cisse and G. F. Bolling: Acta Mater., 1974, vol. 22, pp. 677-686.

    CAS  Article  Google Scholar 

  6. 6.

    6. H. Fredriksson and J. Stjerndahl: Metal Sci., 1982, vol. 16, pp. 575-585.

    CAS  Article  Google Scholar 

  7. 7.

    7. H. W. Kerr and W. Kurz: Int. Mater. Rev., 1996, vol. 41, pp. 129-164.

    CAS  Article  Google Scholar 

  8. 8.

    8. D. M. Stefanescu: ISIJ Int., 2006, vol. 46, pp. 786-794.

    CAS  Article  Google Scholar 

  9. 9.

    9. N. M. Xiao, Y. Chen, D. Z. Li and Y. Y. Li: Sci. China Technol. Sci., 2012, vol. 55, pp. 341-356.

    CAS  Article  Google Scholar 

  10. 10.

    10. H. Fredriksson and T. Nylén: Metal Sci., 1982, vol. 16, pp. 283-294.

    CAS  Article  Google Scholar 

  11. 11.

    11. H. Shibata, Y. Arai, M. Suzuki and T. Emi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 981-991.

    CAS  Article  Google Scholar 

  12. 12.

    12. H. Nassar and H. Fredriksson: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2776-2783.

    CAS  Article  Google Scholar 

  13. 13.

    13. D. Phelan, M. Reid and R.Dippenaar: Mater. Sci. Eng. A, 2008, vol. 477A, pp. 226-232.

    Article  Google Scholar 

  14. 14.

    14. M. Reid, D. Phelan and R. Dippenaar: ISIJ Int., 2004, vol. 44, pp. 565-572.

    CAS  Article  Google Scholar 

  15. 15.

    15. S. Griesser, C. Bernhard, R. Dippenaar: Acta Mater., 2014, vol. 81, pp. 111-120.

    CAS  Article  Google Scholar 

  16. 16.

    16. S. Griesser, C. Bernhard and R. Dippenaar: ISIJ Int., 2014, vol. 54, pp. 466-473.

    CAS  Article  Google Scholar 

  17. 17.

    Steinbach I, Pezzolla F, Nestler B, Seeβelberg M, Prieler R, Schmitz GJ, Rezende JLL (1996) Physica D 94:135-147.

    Article  Google Scholar 

  18. 18.

    18. J. Tiaden, B. Nestler, H. J. Diepers and I. Steinbach: Physica D, 1998, vol. 115, pp. 73-86.

    CAS  Article  Google Scholar 

  19. 19.

    19. J. Tiaden: J. Cryst. Growth, 1999, vol. 198-199, pp. 1275-1280.

    Article  Google Scholar 

  20. 20.

    20. B. Nestler and A. Wheeler: Physica D, 2000, vol. 138, pp. 114-133.

    CAS  Article  Google Scholar 

  21. 21.

    21. A. Choudhury, B. Nestler, A. Telang, M. Selzer and F. Wendler: Acta Mater., 2010, vol. 58, pp. 3815-3823.

    CAS  Article  Google Scholar 

  22. 22.

    22. J. S. Lee, S. G. Kim, W. T. Kim and T. Suzuki: ISIJ Int., 1999, vol. 39, pp. 730-736.

    CAS  Article  Google Scholar 

  23. 23.

    Kim SG, Kim WT, Suzuki T (1998) Phys Rev E 58:7186-7197

    Article  Google Scholar 

  24. 24.

    24. M. Ode, S. G. Kim, W. T. Kim and T. Suzuki: ISIJ Int., 2005, vol. 45, pp. 147-149.

    CAS  Article  Google Scholar 

  25. 25.

    25. D. Phelan, M. Reid and R. Dippenaar: Comp. Mater. Sci., 2005, vol. 34, pp. 282-289.

    CAS  Article  Google Scholar 

  26. 26.

    26. D. Phelan, M. Reid and R. Dippenaar: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 985-994.

    CAS  Article  Google Scholar 

  27. 27.

    27. M. Ohno and K. Matsuura: Acta Mater., 2010, vol. 58, pp. 5749-5758.

    CAS  Article  Google Scholar 

  28. 28.

    28. M. Ohno and K. Matsuura: ISIJ Int., 2010, vol. 50, pp. 1879-1885.

    CAS  Article  Google Scholar 

  29. 29.

    29. L. Zhang, M. Stratmann, Y. Du, B. Sundman and I. Steinbach: Acta Mater., 2015, vol. 88, pp. 156-169.

    CAS  Article  Google Scholar 

  30. 30.

    30. S. Y. Pan, M. F. Zhu and M. Rettenmayr: Acta Mater., 2017, vol. 132, pp. 565-575.

    CAS  Article  Google Scholar 

  31. 31.

    31. S. Y. Pan and M. F. Zhu: Acta Mater., 2018, vol. 146, pp. 63-75.

    CAS  Article  Google Scholar 

  32. 32.

    32. S. G. Kim, W. T. Kim, T. Suzuki and M. Ode: J. Crystal Growth, 2004, vol. 261, pp. 135-158.

    CAS  Article  Google Scholar 

  33. 33.

    33. M. Ohno and K. Matsuura: Acta Mater., 2010, vol. 58, pp. 6134-6141.

    CAS  Article  Google Scholar 

  34. 34.

    34. M. Hillert: Solidification and Casting of Metals, 1st ed., The Metals Society, London, 1979, pp. 81.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of National Key Research and Development Plan (Nos. 2017YFB0304100, 2016YFB0300105), National Natural Science of China (Nos. 51674072, 51704151, 51804067) and Fundamental Research Funds for the Central Universities (Nos. N182504014, N170708020, N172503013).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sen Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 2, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Liu, G., Wang, P. et al. In Situ Observation and Phase-Field Modeling of Peritectic Solidification of Low-Carbon Steel. Metall Mater Trans A 51, 767–777 (2020). https://doi.org/10.1007/s11661-019-05551-z

Download citation