A New Constitutive Model for Thermal Deformation of Magnesium Alloys

Abstract

Based on the stress–strain curves of as cast Mg-8Gd-3Y alloy, which were obtained by isothermal compression tests at temperatures ranging from 350 °C to 450 °C and strain rates from 0.001 to 1.5 s−1, a new constitutive model for thermal deformation of magnesium alloys was proposed from the functional relationship between the ratio of instantaneous stress to peak stress (σ/σp) and that of instantaneous strain to peak strain (ε/εp). The undetermined parameters of the model were calculated through parameter regression, and the predicted results agree well with the experimental results. To study the applicability and accuracy of the new model, the stress–strain curves of the compression tests of AZ31B and ZK60 alloys in the literature were modeled and calculated by parameter regression, and their predicted values are very close to the experimental values. Then, the new constitutive model was integrated into a finite element software to simulate the load–stroke curves of isothermal upsetting of the specimen with variable cross-section and plane strain forging of Mg-8Gd-3Y alloy. Under six different process parameters, the simulated load–stroke curves are well consistent with the experimental curves. All the results verify the accuracy of the new model for thermal deformation of magnesium alloys.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. 1.

    C. Meng, Z.K. Chen, H.N. Yang, G. Li, X.L. Wang and H. Bao: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5192–5204.

    Google Scholar 

  2. 2.

    D. Ghosh, O.T. Kingstedt and G. Ravichaneran: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 14–19.

    Google Scholar 

  3. 3.

    H.C. Pan, F.H. Wang, M.L. Feng, L. Jin, J. Dong and P.D. Wu: Mater. Sci. Eng. A, 2018, vol. 712, pp. 585–91.

    CAS  Google Scholar 

  4. 4.

    H.L. Chen, J. Yang, H. Zhou, J. Moering, Z. Yin, Y.L. Gong and K.Y. Zhao: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3961–70.

    Google Scholar 

  5. 5.

    S.M. Fatemi, A. Zarei-Hanzaki and J.M. Cabrera: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2563–73.

    Google Scholar 

  6. 6.

    J.Q. Li, J. Liu and Z.S. Cui: Mater. Sci. Eng. A, 2015, vol. 643, pp. 32–36.

    CAS  Google Scholar 

  7. 7.

    M.Z. Bian, Z.R. Zeng, S.W. Xu, W.N. Tang, C.H.J. Davies, N. Birbilis and J.F. Nie: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5709–13.

    Google Scholar 

  8. 8.

    Y.Y. Dong, C.S. Zhang, X. Lu, C.X. Wang and G.Q. Zhao: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2567–81.

    Google Scholar 

  9. 9.

    Y.J. Wang, J. Peng, L.P. Zhong and F.S. Pan: J. Alloys Compd., 2016, vol. 681, pp. 455–70.

    CAS  Google Scholar 

  10. 10.

    W.T. Jia, S. Xu, Q.C. Le, L. Fu, L.F. Ma and Y. Tang: Mater. Des., 2016, vol. 106, pp. 120–32.

    CAS  Google Scholar 

  11. 11.

    Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu and X. Fan: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2790–97.

    Google Scholar 

  12. 12.

    H.T. Zhou, C.M. Liu and M.A. Chen: Mater. Sci. Tech., 2006, vol. 22, pp. 597–603.

    CAS  Google Scholar 

  13. 13.

    Z.W. Cai, F.X. Chen and J.Q. Guo: J. Alloys Compd., 2015, vol. 648, pp. 215–22.

    CAS  Google Scholar 

  14. 14.

    L.C. Tsao, Y.T. Huang and K.H. Fan: Mater. Des., 2014, vol. 53, pp. 865–69.

    CAS  Google Scholar 

  15. 15.

    H. Takuda, T. Morishita, T. Kinoshita and N. Shirakawa: J. Mater. Process. Tech., 2005, vol. 164–165, pp. 1258–62.

    Google Scholar 

  16. 16.

    J. Luan, C. Sun, X. Li and Q. Zhang: Mater. Sci. Technol., 2014, vol. 30, pp. 211–19.

    CAS  Google Scholar 

  17. 17.

    M.S. Arun and U. Chakkingal: Mater. Sci. Eng. A, 2019, vol. 754, pp. 659–73.

    CAS  Google Scholar 

  18. 18.

    H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen and Q.D. Wang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2022–26.

    Google Scholar 

  19. 19.

    G.Z. Quan, Y. Shi, C.T. Yu and J. Zhou: Mater. Res., 2013, vol. 16, pp. 785–91.

    CAS  Google Scholar 

  20. 20.

    Q. Tang, M.Y. Zhou, L.L. Fan, Y.W.X. Zhang, G.F. Quan and B. Liu: Vacuum, 2018, vol. 155, pp. 476–89.

    CAS  Google Scholar 

  21. 21.

    Z.J. Wang, L.H. Qi, G. Wang, H.J. Li and M.S. Dargusch: Mech. Mater., 2016, vol. 102, pp. 90–96.

    Google Scholar 

  22. 22.

    Mei RB, Bao L, Huang F, Zhang X, Qi XW, Liu XH (2018) Mech Mater 125:110–20

    Google Scholar 

  23. 23.

    H. Yu, H.S. Yu, G. H. Min, S.S. Park, B.S. You and Y.M. Kim: Met. Mater. Int., 2013, vol. 19, pp. 651–65.

    Google Scholar 

  24. 24.

    L. Li and X.M. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1396–1401.

    Google Scholar 

  25. 25.

    Z.H. Zhou, Q.C. Fan, Z.H. Xia, A.G. Hao, W.H Yang, W. Ji and H.Q. Cao: J. Mater. Sci. Tech., 2017, vol. 33, pp. 637–44.

    Google Scholar 

  26. 26.

    R. Alizadeh, R. Mahmudi, O.A. Ruano and A.H.W. Ngan: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5699–5709.

    Google Scholar 

  27. 27.

    J.Q. Hao, J.S. Zhang, C.X. Xu and K.B. Nie: J. Alloys Compd., 2018, vol. 754, pp. 283–96.

    CAS  Google Scholar 

  28. 28.

    Y. Sun, L.X. Hu and J.S. Ren: Mater. Charact., 2015, vol. 100, pp. 163–69.

    CAS  Google Scholar 

  29. 29.

    S. He, C.S. Li, Z.Y. Huang and J.J. Zheng: J. Mater. Res., 2017, vol. 32, pp. 3831–41.

    CAS  Google Scholar 

  30. 30.

    R. Bobbili and V. Madhu: Mater. Sci. Eng. A, 2017, vol. 700, pp. 82-91.

    CAS  Google Scholar 

  31. 31.

    H.T. Zhou, X.Q. Zeng, Q.D. Wang and W.J. Ding: Acta Metall. Sin., 2004, vol. 17, pp. 155–60.

    CAS  Google Scholar 

  32. 32.

    L.X. Xu, H.B. Wu and B.S. Xie: Mater. Sci. Technol., 2018, vol. 34, pp. 229–41.

    CAS  Google Scholar 

  33. 33.

    Y. Bergstrom: Mater. Sci. Eng., 1970, vol. 5, pp. 193–200.

    CAS  Google Scholar 

  34. 34.

    A. Laasraoui and J.J. Jonas: Metall. Trans. A, 1991, vol. 22A, pp. 151–60.

    CAS  Google Scholar 

  35. 35.

    A. Laasraoui and J.J. Jonas: Metall. Trans. A, 1991, vol. 22A, pp. 1545–1558.

    CAS  Google Scholar 

  36. 36.

    S. Serajzadeh and A.K. Taheri: Mech. Res. Commun., 2003, vol. 30, pp. 87–93.

    Google Scholar 

  37. 37.

    J. Liu, Z.S. Cui and C.X. Li: Comp. Mater. Sci., 2008, vol. 41, pp. 375–82.

    CAS  Google Scholar 

  38. 38.

    C. Wang, J. Liu and Z.S. Cui: J. Plast. Eng., vol. 18, pp. 22–27. (In Chinese)

  39. 39.

    L. Yuan, Z. Zhao, W.C. Shi, F.C. Xu and D.B. Shan: Int. J. Adv. Manuf. Technol., 2015, vol. 78, pp. 2037–47.

    Google Scholar 

  40. 40.

    Y. Liu, C. Geng, Q.Q. Lin, Y.F. Xiao, J.R. Xu and W. Kang: J. Alloys Compd., 2017, vol. 713, pp. 212–21.

    CAS  Google Scholar 

  41. 41.

    Z.P. Guan, M.W. Ren, P. Zhao, P.K. Ma and Q.L. Wang: Mater. Des., 2014, vol. 54, pp. 906–13.

    CAS  Google Scholar 

  42. 42.

    H.T. Zhou, X.Q. Zeng, L.L. Liu, J. Dong, Q.D. Wang, W.J. Ding and Y.P. Zhu: Mater. Sci. Tech., 2004, vol. 20, pp. 1397–1402.

    CAS  Google Scholar 

  43. 43.

    A.M.S. Hamouda: J. Mater. Process. Tech., 2002, vol. 124, pp. 209–15.

    CAS  Google Scholar 

  44. 44.

    J. Liu, Z.S. Cui and C.X. Li: J. Mater. Process. Tech., 2008, vol. 205, pp. 497–505.

    CAS  Google Scholar 

  45. 45.

    A. Hadadzadeh, M.A. Wells, S.K. Shaha, H. Jahed and B.W. Williams: J. Alloys Compd., 2017, vol. 702, pp. 274–89.

    CAS  Google Scholar 

  46. 46.

    H.J. Hu, H. Wang, Z.Y. Zhai, Y.Y. Li, J.Z. Fan and Z.W. Qu: Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 1621–30.

    Google Scholar 

  47. 47.

    S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou and J.F. Fan: Mater. Des., 2014, vol. 64, pp. 177–84.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the supports of the National Key Research and Development Program of China (Grant No. 2016YFB0301103), the National Natural Science Foundation of China (Grant No. 51601112), and the Shanghai Rising-Star Program (Grant Nos. 16QB1402800 and 17QB1403000).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fenghua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 29, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Wang, F., Wei, X. et al. A New Constitutive Model for Thermal Deformation of Magnesium Alloys. Metall Mater Trans A 51, 497–512 (2020). https://doi.org/10.1007/s11661-019-05528-y

Download citation