Effects of Prior Austenite Grain Size on Hydrogen Delayed Fracture of Hot-Stamped Boron Martensitic Steel

Abstract

Understanding the hydrogen delayed fracture requires elucidating the interaction of relevant cracks based on the microstructural features. The microstructural features of a hydrogen delayed fracture were studied for martensitic steel under different soaking times and prior austenite grain sizes based on the furnace temperature. A considerable correlation is investigated between the coarseness of the austenite grain and degree of susceptibility on a hydrogen delayed fracture. The deterioration of hydrogen delayed fracture is attributed to reversible hydrogen in the microstructure sites with a low trapping energy weakening the grain boundary and rapidly propagating the crack initiation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    E.R.H. Fuchs, F.R. Field, R. Roth, R.E. Kirchain, Compos. Sci. Technol,. 2008, Vol.68, 1989-2002

    CAS  Google Scholar 

  2. 2.

    Development of Ultra High Strength Steels for Reduced Carbon Emissions in Automotive Vehicles, in Project Outlines, ed. Sheffield: University of Sheffield and University of Manchester, 2010, p. 11

  3. 3.

    M. Miyanishi, Metal Forming, 2010, Vol.81, 1-8

    Google Scholar 

  4. 4.

    K. Hasegawa, K. Kaneko, K. Seto, JFE Technical Report, 2013, Vol.18, 80-88

    Google Scholar 

  5. 5.

    T. Tayor, A. Clough, Mater. Sci. Technol., 2018, Vol.34, 809-861

    Google Scholar 

  6. 6.

    P. Namklang, V. Uthaisangsuk, J. Manuf. Process, 2016, Vol.21, 87-100

    Google Scholar 

  7. 7.

    M. Merklein, M. Weiland, M. Lechnera, S. Bruschi, A. Ghiotti, Journal of Materials Processing Technology, 2016, Vol.228, 11-24

    CAS  Google Scholar 

  8. 8.

    J. Bian, H. Mohrbacher, S. Zhan, W. Wang, Y. Zhang, L. Wang: Proc. 5th Int. Conf. Hot Sheet Metal Form. High-Perf. Steel, Toronto, pp. 65–74.

  9. 9.

    G. Lovicu, M. Bottazzi, F. Daiuto, M. De Sanctis, A. Dimatteo, C. Santus, R. Valentini: Phys. Metall. Mater. Sci., 2012, Vol. 43, 4075-4087

    CAS  Google Scholar 

  10. 10.

    H.J. Kim, S.H. Jeon, W.S. Yang, B.G. Yoo, Y.D. Chung, H.Y. Ha, H.Y. Chung, J. Alloys Comp. ,2018, Vol.735, 2067-2080

    CAS  Google Scholar 

  11. 11.

    S. Ootsuka, S. Fujita, E. Tada, A. Nishikata, T. Tsuru, Corros. Sci., 2015, Vol.98, 430-437

    CAS  Google Scholar 

  12. 12.

    C. Georges, T. Sturel, P. Drillet, J.M. Mataigne, ISIJ International, 2013, Vol.53, 1295-1304

    CAS  Google Scholar 

  13. 13.

    G.M. Pressouyre, I.M. Bernstein, Metal. Trans., 1981, Vol.12, 835-844

    CAS  Google Scholar 

  14. 14.

    K. Takai, R. Watanuki, ISIJ International, 2003, Vol.43, 520-526

    CAS  Google Scholar 

  15. 15.

    K. Takai, H. Shouda, H. Suzuki, M. Nagumo, Acta Materia., 2008, Vol.56, 5158-5167

    CAS  Google Scholar 

  16. 16.

    M. Koyama, C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater., 2014, Vol.70, 174-187

    CAS  Google Scholar 

  17. 17.

    S.P. Lynch: Corrosion NACE International, 2007.

  18. 18.

    H.K. Birnbaum, P. Sofronis, Mater. Sci. Eng. A, 1994, Vol.176, 191-202

    CAS  Google Scholar 

  19. 19.

    R.A. Oriani, P.H. Josephic, Acta Metall., 1974, Vol.22, 1065-1074

    CAS  Google Scholar 

  20. 20.

    I.M. Robertson, Eng. Fracture Mech., 2001, Vol.68, 671-692

    Google Scholar 

  21. 21.

    S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, Acta Materialia, 2006, Vol.54, 5323-5331

    CAS  Google Scholar 

  22. 22.

    A.R. Marder, G. Krauss, Trans. ASM, 1967, Vol.60, 651-660

    CAS  Google Scholar 

  23. 23.

    R.O. Ritchie, B. Francis, W.L. Server, Metall. Mater. Tran. A, 1976, Vol.7, 831-838

    CAS  Google Scholar 

  24. 24.

    W. Jeff, E. Charles, S. Jatinder, H. Curt: SAE Int. J. Mater. Manuf., 2016, Vol. 9, 488-93

    Google Scholar 

  25. 25.

    K. Hikida, T. Nishibata, H. Kikuchi, T. Suzuki, N. Nakayama N: Proc. 4th Int. Conf. Hot Sheet Metal Form. High-Perform. Steel, 2013, pp. 127–34

  26. 26.

    A. Shibata, H. Takahashi, N. Tsuji, ISIJ Int., 2012, Vol.52, 208-212

    CAS  Google Scholar 

  27. 27.

    R. Gangloff, B. Somerday (eds), Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments. Elsevier, Amsterdam, 2012

    Google Scholar 

  28. 28.

    J. Song, W. Curtin, Nat. Mater., 2013, Vol.12, 145-151

    CAS  Google Scholar 

  29. 29.

    K. Mori, P.F. Bariani, B.A. Beherens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, J. Yanagimoto, CIRP Annals- Manufacturing Technology, 2017, Vol.66, 755-777

    Google Scholar 

  30. 30.

    A. Ghiotti, S. Bruschi, F. Borsetto, Journal of Materials Processing Technology, 2011, Vol.211, 1694-1700

    CAS  Google Scholar 

  31. 31.

    W.J. Hui, Z.B. Xu, Y.J. Zhang, X.L. Zhao, C.W. Shao, Y.Q. Weng, Mater. Sci. Eng. A , 2017, Vol.704, 199-206

    CAS  Google Scholar 

  32. 32.

    M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, I.M. Rodertson, Acta Materialia, 2008, Vol.59, 1601-1606

    Google Scholar 

  33. 33.

    P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, Journal of the Mechanics and Physics of Solids, 2010, Vol.58, 206-226.

    CAS  Google Scholar 

  34. 34.

    D. Pérez-Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, K. Verbeken: Corros. Sci., 2012, Vol. 65, 199-208

    Google Scholar 

  35. 35.

    F.G. Wei, K. Tsuzaki, Metall. Mater. Trans. A, 2006, Vol.37A, 331-353

    CAS  Google Scholar 

  36. 36.

    P.D. Hicks, C.J. Altsteter, Metallallurgical Transaction A, 2003, Vol.23A, 513-522

    Google Scholar 

  37. 37.

    N.R. Moody, R.E. Stoltz, M.W. Perra, Metallurigical Transaction A, 1987, Vol.18A, 1469-1482

    CAS  Google Scholar 

  38. 38.

    N.R. Moody, S.L. Robinson, M.W. Perra, Engineering Fracture Mechanics, 1991, Vol.39, 941-954

    Google Scholar 

  39. 39.

    I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren: Metall. Mater. Trans. A, 2015, Vol. 46A, 2323-2341

    Google Scholar 

  40. 40.

    A. Kishi, N. Takano, J. Phys. Conf. Ser. 2010, 230

  41. 41.

    M. Pappes, M. Iannuzzi, R. M. Carranza, , J. Electrochem. Soc., 2013, Vol.160, 168-178

    Google Scholar 

  42. 42.

    S.J. Lee, A.R. Joseph, K. George, K.M. David, ISIJ Int., 2010, Vol.50, 294-301

    CAS  Google Scholar 

  43. 43.

    Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, J. Wang, A. Atrens, Corrosion Reviews, 2016, Vol.34, 127-152

    CAS  Google Scholar 

  44. 44.

    M.L. Martin, I.M. Robertson, P. Sofronis, Acta Materialia, 2011, Vol.59, 3680-3687

    CAS  Google Scholar 

  45. 45.

    T. Neeraj, R. Srinivasan, J. Li, Acta Materialia, 2012, Vol.60, 5160-5171

    CAS  Google Scholar 

  46. 46.

    A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Materialia, 2012, Vol. 60, 5182-5189

    CAS  Google Scholar 

  47. 47.

    J. Tien, A. Thompson, I. Bernstein, R. Richards, Metall. Mater. Trans. A, 1976, Vol.7A, 821-829

    CAS  Google Scholar 

  48. 48.

    J. Albrecht, I.M. Bernstein, A.W. Thompson, Metall. Trans. Mater. A, 1982, Vol. 13A, 811-820

    Google Scholar 

  49. 49.

    G.F. Li, R.G. Wu, T.C. Lei, Metall. Trans. A, 1992, Vol.23, 2879-2885

    CAS  Google Scholar 

  50. 50.

    V. Olden, C. Thaulow, R. Johnsen, Materials and Design, 2008, Vol.29 1934-1948

    CAS  Google Scholar 

  51. 51.

    W.C. Luu, J.K. Wu, Corros. Sci., 1996, Vol.38, 239-245

    CAS  Google Scholar 

Download references

Acknowledgment

This work was carried out at the Hyundai-Steel Research and Development Center of the Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hye-Jin Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 22, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ. Effects of Prior Austenite Grain Size on Hydrogen Delayed Fracture of Hot-Stamped Boron Martensitic Steel. Metall Mater Trans A 51, 237–251 (2020). https://doi.org/10.1007/s11661-019-05523-3

Download citation