Deep Understanding of the Influence of the Process Parameters During Linear Friction Welding on the Joint Quality and the Microstructural Changes of Two Mono-Material Titanium Alloy Joints: The β-Metastable Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) and the Near-α Ti-6Al-2Sn-4Zr-2Mo (Ti6242)

Abstract

Linear friction welding (LFW) of near-α Ti-6Al-2Sn-4Zr-2Mo (Ti6242) and β-metastable Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) was studied through eight sets of process parameters. Varying the main LFW process parameters revealed that: (1) increasing the ratio between the normal pressure and local flow stress shortens the duration of friction phase (III); this ratio is influenced by the normal pressure and/or heat generated by the longitudinal deformation conditions, the latter being driven by the oscillation parameters (amplitude and frequency); (2) the joint and PAZ extents can be drastically lowered by favoring the extrusion of the heated material through higher normal pressures; (3) the presence of defects is mostly due to contaminant layers initially present on the contact surfaces; these defects can be dissipated into the bulk with the help of an enhanced recrystallization and/or material blending; (4) the two-component {110}〈111〉 β texture intensity is mostly influenced by the amplitude and degree of recrystallization. Subjecting three significantly different Ti17 joints to β-annealing resulted in similar homogenized microstructures and defect dissolution. The different material responses of Ti17 and Ti6242 to LFW showed the necessity of defining optimized sets of process parameters depending on the welded materials and initial microstructures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Liu, Z. & Welsch, G. : Metall. Trans. A, 1988, vol. 19, pp. 527–42.

    Article  Google Scholar 

  2. 2.

    Huang, J. L., Warnken, N., Gebelin, J.-C., Strangwood, M. & Reed, R. C. : Acta Mater., 2012, vol. 60, pp. 3215–25.

    CAS  Article  Google Scholar 

  3. 3.

    Maalekian, M. : Sci. Technol. Weld. Join., 2007, vol. 12, pp. 738–59.

    Article  Google Scholar 

  4. 4.

    Vairis, A. & Frost, M. : Wear, 1998, vol. 217, pp. 117–31.

    CAS  Article  Google Scholar 

  5. 5.

    Ballat-Durand, D., Bouvier, S., Risbet, M. & Pantleon, W. : Mater. Charact., 2018, vol. 144, 661–70.

    CAS  Article  Google Scholar 

  6. 6.

    Ballat-Durand, D., Bouvier, S., Risbet, M. & Pantleon, W. : Mater. Charact., 2019, vol. 151, pp. 38-52.

    CAS  Article  Google Scholar 

  7. 7.

    Li, W., Vairis, A., Preuss, M. & Ma, T. : Int. Mater. Rev., 2016, vol. 61, pp. 71–100.

    CAS  Article  Google Scholar 

  8. 8.

    McAndrew, A. R., Colegrove, P. A., Bühr, C., Flipo, B. C. D. & Vairis, A. : Prog. Mater. Sci., 2018, vol. 92, pp. 225–57.

    CAS  Article  Google Scholar 

  9. 9.

    Wanjara, P. & Jahazi, M. : Metall. Mater. Trans. A, 2005, vol. 36, pp. 2149–64.

    CAS  Article  Google Scholar 

  10. 10.

    Romero, J., Attallah, M. M., Preuss, M., Karadge, M. & Bray, S. E. : Acta Mater., 2009, vol. 57, pp. 5582–92.

    CAS  Article  Google Scholar 

  11. 11.

    Lütjering, G. & Williams, J. C. : Titanium (Springer Berlin Heidelberg, 2003).

    Google Scholar 

  12. 12.

    G.W. Stachowiak and A.W. Batchelor: Engineering Tribology, Elsevier, Amsterdam, 2001.

    Google Scholar 

  13. 13.

    Humphreys, J., Roher, G. S. & Rollett, A. : Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2017).

    Google Scholar 

  14. 14.

    Turner, R., Gebelin, J.-C., Ward, R. M. & Reed, R. C. : Acta Mater., 2011, vol. 59, pp. 3792–803.

    CAS  Article  Google Scholar 

  15. 15.

    V.K. Manupati, G. Rajyalakshmi, M.L.R. Varela, J. Machado, and G.D. Putnik: Innovation, Engineering and Entrepreneurship, J. Machado, F. Soares, and G. Veiga, eds., Springer, Berlin, 2018, vol. 505, pp. 608–15.

  16. 16.

    Smidoda, K., Gottschalk, W. & Gleiter, H. : Acta Metall., 1978, vol. 26, pp. 1833–36.

    CAS  Article  Google Scholar 

  17. 17.

    Y. Mizuno: Temperature Dependence of Oxide Decomposition on Titanium Surfaces in UHV. United States. https://doi.org/10.2172/798917.

  18. 18.

    Li, W., Suo, J., Ma, T., Feng, Y. & Kim, K. : Mater. Sci. Eng. A, 2014, vol. 599, pp. 38–45.

    CAS  Article  Google Scholar 

  19. 19.

    Garcia, J. M. & Morgeneyer, T. F. : Fatigue & Fracture of Engineering Materials & Structures, 2019, vol. 42, pp. 1100-17.

    CAS  Article  Google Scholar 

  20. 20.

    Vishwakarma, K., Ojo, O., Wanjara, P. & Chaturvedi, M. : JOM, 2014, vol. 66, pp. 2525-34.

    CAS  Article  Google Scholar 

  21. 21.

    Masoumi, F., Shahriari, D., Jahazi, M., Cormier, J. & Flipo, B. C. D. : Metall. Mater. Trans. A, 2017, vol. 48, pp. 2886–99.

    Article  Google Scholar 

  22. 22.

    Dalgaard, E., Wanjara, P., Gholipour, J., Cao, X. & Jonas, J. J. : Acta Mater., 2012, vol. 60, pp. 770–80.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the French National Research Agency (ANR) through the OPTIMUM ANR-14-CE27-0017 project as well as the Spatial and Aeronautic Research Foundation, Hauts-de-France Region and European Regional Development Fund (ERDF) 2014/2020 for the funding of this work. The authors are also grateful to ACB for providing LFW welded samples and Airbus for their technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Salima Bouvier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 13, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballat-Durand, D., Bouvier, S. & Risbet, M. Deep Understanding of the Influence of the Process Parameters During Linear Friction Welding on the Joint Quality and the Microstructural Changes of Two Mono-Material Titanium Alloy Joints: The β-Metastable Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) and the Near-α Ti-6Al-2Sn-4Zr-2Mo (Ti6242). Metall Mater Trans A 51, 263–278 (2020). https://doi.org/10.1007/s11661-019-05503-7

Download citation