An Investigation on Microstructures and Mechanical Properties of Ultra-Low Cu Layer Thickness Ratio Cu/8011/1060 Clads

Abstract

High-performance, ultra-low Cu layer thickness ratio pure Cu/8011 Al alloy/1060 Al alloy (Cu/8011/1060, for short) clads were first fabricated by roll casting and then roll bonding. The effects of rolling reduction rates on the microstructural evolutions and mechanical properties of Cu/8011/1060 clads during the roll-bonding process have been systematically investigated. Results show that the continuous but unequal-thickness intermetallic compound (IMC) layer is fractured after roll bonding. The fracture location is mainly at the transition zone between type I and type II IMCs or in the interiors of type I and type II IMCs. The IMCs are identified as Al4Cu9, AlCu and Al2Cu. The Cu layer thickness ratio decreases from 13.7 to 4.1 pct after roll bonding. The Cu/8011/1060 clads prepared at the rolling reduction rate of 47 pct have the best comprehensive mechanical performance with an ultimate tensile strength (UTS) of 135.7 MPa and elongation (EL) of 25.5 pct. Two different tensile fracture modes are observed for Cu/8011/1060 clads fabricated at different rolling reduction rates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    T. Liu, Q.D. Wang, Y.D. Sui, Q.G. Wang and W.J. Ding: Mater. Des. 2016, vol. 89, pp. 1137-46.

    CAS  Article  Google Scholar 

  2. 2.

    N. Ahmed: J. Mech. Work. Technol. 1978, 2(1): 19-32.

    CAS  Article  Google Scholar 

  3. 3.

    H. Amani and M. Soltanieh: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2524-34.

    CAS  Article  Google Scholar 

  4. 4.

    R. Uscinowicz: Mater. Des. 2013, vol. 49, pp. 693-700.

    CAS  Article  Google Scholar 

  5. 5.

    T.H. Lee, Y.J. Lee, K. Park, H.H. Nersisyan, H.G. Jeong and J.H. Lee: J. Mater. Process. Technol. 2013, vol. 213, pp. 487-94.

    CAS  Article  Google Scholar 

  6. 6.

    G.P. Liu, Q.D. Wang, L. Zhang, B. Ye, H.Y. Jiang and W.J. Ding: Metall. Mater. Trans. A, 2018, vol. 49, pp. 661-72.

    CAS  Article  Google Scholar 

  7. 7.

    H. Huang, Y. Dong, M. Yan and F. Du: Trans. of Nonferrous Met. Soc. China, 2017, vol. 27, pp. 1019-25.

    CAS  Article  Google Scholar 

  8. 8.

    T. Haga, K. Takahashi, M. Ikawa and H. Watari: J. Mater. Process. Technol. 2003, vol. 140, pp. 610-5.

    CAS  Article  Google Scholar 

  9. 9.

    M. Asemabadi and M. Sedighi, M: Mater. Sci. Eng. A, 2012, vol. 558, pp. 144-9.

    CAS  Article  Google Scholar 

  10. 10.

    H. Li and J. Han: J. Univ. Sci. Technol. Beijing, 2006, vol. 13, pp. 532-7.

    CAS  Article  Google Scholar 

  11. 11.

    A. Mamalis and A. Szalay: J. Mater. Process. Technol. 1998, vol. 83, pp. 48–53.

    Article  Google Scholar 

  12. 12.

    G. Chen, J.T. Li, H.L. Yu, L.H. Su, G.M. Xu, J.S. Pan, T. You, G. Zhang, K.M. Sun and L.Z. He: Mater. Des. 2016, vol. 112, pp. 263-74.

    CAS  Article  Google Scholar 

  13. 13.

    M. Hoseini-Athar and B. Tolaminejad: Met. Mater. Int. 2016, vol. 22, pp. 670-80.

    CAS  Article  Google Scholar 

  14. 14.

    X.L. Ma, C.X. Huang, W.Z. Xu, H. Zhou, X.L. Wu and Y.T. Zhu: Scr. Mater. 2015, vol. 103, pp. 57-60.

    CAS  Article  Google Scholar 

  15. 15.

    N. Bay: Met. Constr. 1986, vol. 18, pp. 369-72.

    CAS  Google Scholar 

  16. 16.

    R. Jamaati and M. Toroghinejad: Mater. Des. 2010, vol. 31, pp. 4508-13.

    CAS  Article  Google Scholar 

  17. 17.

    Antoine, D. Bernadette and H. Eric: Intermetallics, 2014, vol. 50, pp. 34-42.

    Article  Google Scholar 

  18. 18.

    K.S. Lee, S.E. Lee, H.K. Sung, D.H. Lee, J.S. Kim, Y.W. Chang, S. Lee and Y.N. Kwon: Mater. Sci. Eng. A, 2013, vol. 583, pp. 177-81.

    CAS  Article  Google Scholar 

  19. 19.

    A. Eraslan: Mech. Res. Commun. 2002, vol. 29, pp. 339-50.

    Article  Google Scholar 

  20. 20.

    T. Wang, S. Li, Z. Ren, J. Han and Q. Huang: Mater. Lett. 2019, vol. 234, pp. 79-82.

    CAS  Article  Google Scholar 

  21. 21.

    R. Hawkins and J. Wright: Int. J. Mech. Sci. 1972, vol. 14, pp. 875-78.

    Article  Google Scholar 

  22. 22.

    M. Eizadjou, A.K. Talachi, H.D. Manesh, H.S. Shahabi and K. Janghorban: Compos. Sci. Technol. 2008, vol. 68, pp. 2003-9.

    CAS  Article  Google Scholar 

  23. 23.

    X. Li, G. Zu and P. Wang: Mater. Sci. Eng. A, 2013, vol. 575, pp. 61-4.

    CAS  Article  Google Scholar 

  24. 24.

    H. Gao, X. Liu, J. Qi, Z.R. Ai and L.Z. Liu: J. Mater. Process. Technol. 2018, vol. 251, pp. 1-11.

    CAS  Article  Google Scholar 

  25. 25.

    H. Chang, M. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier and K. Wu. Mater. Sci. Eng. A, 2012, vol. 543, pp. 249-56.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 51674166) and the 111 Project (Grant No. B16032).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qudong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 6, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wang, Q., Shang, Z. et al. An Investigation on Microstructures and Mechanical Properties of Ultra-Low Cu Layer Thickness Ratio Cu/8011/1060 Clads. Metall Mater Trans A 50, 5866–5876 (2019). https://doi.org/10.1007/s11661-019-05483-8

Download citation