Compressive and Energy Absorption Behavior of Multilayered Foam Filled Tubes

Abstract

This article investigates the compressive and energy absorption characteristic of metallic foams and functionally graded foam (FGF) filled tubes containing single-, double-, and triple-layered foams. Closed-cell A356 alloy and pure zinc foams are fabricated by the casting method. The results indicate the preparation of A356 foam with larger bubbles and thinner cell walls and, thereby, lower density and compressive strength compared to the zinc foam. The metallic foams show partially brittle behavior associated with cell walls bending and tearing. The double-layered structures exhibit multiple compression behavior and two distinct plateau regions. The presence of high density zinc foam leads to decreasing the specific energy absorption (SEA) of graded structures. However, the compressive deformation and total energy absorption are significantly affected by the zinc foam. The crash performance of multilayered structures can be controlled by varying the number and material of layers at constant geometric features. The single-layered A356 and double-layered A356-Zn and Zn-A356 structures are considered as the best lightweight crashworthy structures with a combination of high SEA (15.3, 7.7, and 7.3 J/g) and low plateau force (10, 13, and 12 kN). Also, an asymptotic hardening model is developed for the porous metals based on the experimental results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Notes

  1. 1.

    INSTRON is a trademark of…

References

  1. 1.

    A. Baroutaji, M. Sajjia, and A.-G. Olabi: Thin Walled Struct., 2017, vol. 118, pp. 137–63.

    Article  Google Scholar 

  2. 2.

    A.G. Hanssen, M. Langseth, and O.S. Hopperstad: Int. J. Impact Eng., 2000, vol. 24, pp. 347–83.

    Article  Google Scholar 

  3. 3.

    J. Bi, H. Fang, Q. Wang, and X. Ren: Fin. Elem. Anal. Des., 2010, vol. 46, pp. 698–709.

    Article  Google Scholar 

  4. 4.

    M.G. Nava, A. Cruz-Ramirez, M.A.S Rosales, V.H. Gutirrez-Perez, A. Sanchez-Martinez: J. Alloys Compd., 2017, 698, 1009–1017.

    Article  Google Scholar 

  5. 5.

    D.K. Rajak, L.A. Kumaraswamidhas, S. Das, and S. Senthil Kumaran: J. Alloys Compd., 2016, vol. 656, pp. 218–25.

    CAS  Article  Google Scholar 

  6. 6.

    M.A. Islam, A.D. Brown, P.J. Hazell, M.A. Kader, J.P. Escobedo, M. Saadatfar, S. Xu, D. Ruan, and M. Turner: J. Alloys Compd., 2018, vol. 114, pp. 111–22.

    Google Scholar 

  7. 7.

    N. Wang, E. Maire, Y. Cheng, Y. Amani, Y. Li, J. Adrien, and X. Chen: Mater. Charact., 2018, vol. 138, pp. 296–307.

    CAS  Article  Google Scholar 

  8. 8.

    Manoj, D.M. Afzal K, Mondal DP: Mater. Sci. Eng. A, 2018, 731, 324–30.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Mu, G. Yao, L. Liang, H. Luo, and G. Zu: Scripta Mater., 2010, vol. 63, pp. 629–32.

    CAS  Article  Google Scholar 

  10. 10.

    X. Liu, J. Zhang, Q. Fang, H. Wu, and Y. Zhang: Int. J. Impact Eng., 2016, vol. 110, pp. 382–94.

    Article  Google Scholar 

  11. 11.

    A. Astaraie, H.R. Shahverdi, and S.H. Elahi: Trans. Nonferrous Met. Soc. China, 2014, 24, 162–69.

    Google Scholar 

  12. 12.

    Pan L, Yang Y, Ahsan MU, Luong DD, Gupta N, Kumar A, Rohatgi PK (2018) Mater. Sci. Eng. A, 731:413–22.

    CAS  Article  Google Scholar 

  13. 13.

    Y. Sirong, L. Jiaan, L. Yanru, and L. Yaohui: Mater. Sci. Eng. A, 2007, 457, 325–28.

    Article  Google Scholar 

  14. 14.

    D.P. Mondal, M.D. Goel, N. Badge, N. Jha, S. Sahu, and A.K. Barnwal: Mater. Des., 2014, vol. 57, pp. 315–24.

    CAS  Article  Google Scholar 

  15. 15.

    C.J. Zhang, Y. Feng, and X.B. Zhang: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1380–86.

    CAS  Article  Google Scholar 

  16. 16.

    M.D. Goel: Thin Walled Struct., 2015, vol. 90, pp. 1–11.

    Article  Google Scholar 

  17. 17.

    Y. Hangai, K. Takahashi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, N. Yoshikawa: Mater. Sci. Eng. A, 2012, 534, 716–19.

    CAS  Article  Google Scholar 

  18. 18.

    Y. Hangai, T. Morita, and T. Utsunomiya: Mater. Sci. Eng. A, 2017, 696, 544–51.

    CAS  Article  Google Scholar 

  19. 19.

    Y. Hangai, Y. Oba, S. Koyama, and T. Utsunomiya: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3585–89.

    Article  Google Scholar 

  20. 20.

    Y. Hangai, H. Ikeda, K. Amagai, R. Suzuki, M. Matsubara, N. Yoshikawa: Metall. Mater. Trans. A 2018, 49, 4452–55.

    Article  Google Scholar 

  21. 21.

    J. Liu, S. Yu, X. Zhu, M. Wei, Y. Luo, and Y. Liu: J. Alloys Compd., 2009, vol. 476, pp. 220–25.

    CAS  Article  Google Scholar 

  22. 22.

    Y. Hangai, R. Yamaguchi, S. Takahashi, T. Utsunomiya, O. Kuwazuru, and N. Yoshikawa: Metall. Mater. Trans. A, 2013, 44A, 1880–86.

    Article  Google Scholar 

  23. 23.

    H. Bayani and S.M.H. Mirbagheri: Mater. Charact., 2016, vol. 113, pp. 168–79.

    CAS  Article  Google Scholar 

  24. 24.

    J. Kadkhodapour and S. Raeisi: Comput. Mater. Sci., 2014, vol. 83, pp. 137–48.

    CAS  Article  Google Scholar 

  25. 25.

    M.A. Kadar, M.A. Islam, M. Saadatfar, P.J. Hazell, A.D. Brown, S. Ahmed, and J.P. Escobedo: Mater. Des., 2017, vol. 118, pp. 11–21.

    Article  Google Scholar 

  26. 26.

    A.C. Kaya, P. Zaslansky, M. Ipekoglu, and C. Fleck: Mater. Des., 2018, vol. 143, pp. 297–308.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Metal Foam Group of Amirkabir University (MFGAU) through Grant No. 110-mir-13951022. The authors are grateful to Rahyaft Advanced Sciences and Technologies Co. for their support in casting the metal foams.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. H. Mirbagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 17, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salehi, M., Mirbagheri, S.M.H. & Arabkohi, M. Compressive and Energy Absorption Behavior of Multilayered Foam Filled Tubes. Metall Mater Trans A 50, 5494–5509 (2019). https://doi.org/10.1007/s11661-019-05449-w

Download citation