The Role of Ultrasonically Induced Acoustic Streaming in Developing Fine Equiaxed Grains During the Solidification of an Al-2 Pct Cu Alloy

Abstract

Recent research and a simulation of heat transfer and solidification during acoustically generated convection showed that the location of the coolest liquid, and thus the place where the first grains are expected to form, is under the sonotrode. Further, the generated vigorous convection produces a very flat temperature gradient in the bulk of the melt facilitating the formation of a refined equiaxed structure throughout the casting. This study validates these findings through a series of experiments on an Al-2 wt pct Cu alloy, which evaluate grain formation under the sonotrode over time and relate this to the formation of the macrostructure of a cast ingot. Analysis of the results confirms the predictions of the simulation and shows that, for the conditions applied, most grains nucleated in the cavitation zone are swept into the melt by acoustically generated convection and, over a period of 70 seconds, the number of grains increase and they grow with spherical and globular morphology gradually filling the casting with refined equiaxed grains. It was found that the macrostructure of each casting is made up of three microstructural zones. A fine grained equiaxed zone forms from the bottom of the casting due to settling of grains during and after termination of ultrasonic treatment (UST), which increases in size with the increasing duration of UST. Above this zone, a coarse-grained structure is formed due to depletion of UST-generated grains on termination of UST. At the top of the casting, a zone of columnar grains growing from the top surface of the melt is formed. The latter two zones decrease in size with the increasing UST duration until 80 seconds, when the macrostructure consists entirely of the equiaxed zone.

This is a preview of subscription content, log in to check access.

Fig. 1

Adapted from Ref. [15] with permission

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, Gordon and Breach Science Publishers, Amsterdam, 1998.

    Google Scholar 

  2. 2.

    O.V. Abramov: Ultrasound in Liquid and Solid Metals, CRC press, Boca Raton, FL, 1994.

    Google Scholar 

  3. 3.

    Eskin GI, Eskin DG (2014) Ultrasonic Treatment of Light Alloy Melts, 2nd edn. CRC Press, Boca Raton, FL, pp. 129-170

    Google Scholar 

  4. 4.

    Y. Ozawa, X. Liu, S. Takamori, H. Somekawa, and T. Mukai: Materials Transactions, 2008, vol. 49, pp. 972–975.

    Article  Google Scholar 

  5. 5.

    T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman: Metallugical and Materials Transactions A, 2010, vol. 41, pp. 2056–2066.

    CAS  Article  Google Scholar 

  6. 6.

    N. Srivastava, G.P. Chaudhari, M.Qian: Journal of Materials Processing Technology, 2017, vol. 249, pp. 367-378.

    CAS  Article  Google Scholar 

  7. 7.

    H.R. Kotadia, M. Qian, D.G. Eskin, A. Das: Materials & Design, 2017, vol. 132, pp. 266-274.

    CAS  Article  Google Scholar 

  8. 8.

    Q. Liu, Q. Zhai, F. Qi, and Y. Zha: Materials Letters, 2017, vol. 61, pp. 2422–2425.

    Article  Google Scholar 

  9. 9.

    J. Kang, X. Zhang,Y. Hu, J. Ma, Y. Hu and T. Huang: ISIJ International, 2014, vol. 54, pp. 281–287.

    CAS  Article  Google Scholar 

  10. 10.

    B. Nagasivamuni, G. Wang, D.H. StJohn, M.S. Dargusch: Journal of Crystal Growth, 2018, vol. 495, pp. 20-28.

    CAS  Article  Google Scholar 

  11. 11.

    R. Chen, D. Zheng, T. Ma, H. Ding, Y. Su, J. Guo, H. Fu: Scientific Reports, 2017, vol. 7, 41463.

    CAS  Article  Google Scholar 

  12. 12.

    D. Ensminger and L.J. Bond: Ultrasonics: Fundamentals, Technologies, and Applications, 3rd ed., CRC Press, Boca Raton, FL, 2012.

    Google Scholar 

  13. 13.

    Juan A. Gallego-Juárez and Karl F. Graff, Power ultrasonics : applications of high-intensity ultrasound, Woodhead Publishing Ltd, Waltham, Massachusetts, 2015.

    Google Scholar 

  14. 14.

    Y. Ishiwata, S. Komarov, and Y. Takeda: Proc. 13th Int. Conf. Alum. Alloys (ICAA13), H. Weiland, A.D. Rollett, and W.A. Cassada, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, 2012, pp. 183–88.

  15. 15.

    G. Wang, P. Croaker, M. Dargusch, D. McGuckin and D. StJohn: Computational Materials Science, 2017, vol. 134, pp. 116-125.

    CAS  Article  Google Scholar 

  16. 16.

    M.C. Schenker, MJBM Pourquie, D.G. Eskin, B.J. Boersma: Ultrasonics Sonochemistry, 2013, vol. 20, pp. 502–509.

    CAS  Article  Google Scholar 

  17. 17.

    G.S.B. Lebon, G. Salloum-Abou-Jaoude, D. Eskin, I. Tzanakis, K. Pericleous, P. Jarry: Ultrasonics Sonochemistry, 2019, vol. 54, pp. 171–182.

    CAS  Article  Google Scholar 

  18. 18.

    G.S.B. Lebon, I. Tzanakis, K. Pericleous, D. Eskin, P.S. Grant: Ultrasonics Sonochemistry, 2019, vol. 55, pp.243-255.

    CAS  Article  Google Scholar 

  19. 19.

    T. Yamamoto and S. Komarov: Light Metals, 2019, pp. 1527–31. https://doi.org/10.1007/978-3-030-05864-7_192.

  20. 20.

    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn: Journal of Crystals Growth, 2014, vol. 408, pp. 119–124.

    CAS  Article  Google Scholar 

  21. 21.

    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn: Advanced Engineering Materials, 2018, 1800521, pp. 1–12.

    Google Scholar 

  22. 22.

    J. Lighthill: Journal of Sound Vibration, 1978, vol. 61, pp. 391–418.

    Article  Google Scholar 

  23. 23.

    D.H. StJohn, A. Prasad, M.A. Easton, M. Qian: Metallurical and Materials Transactions A, 2015, vol. 46, pp. 4868–4885.

    Article  Google Scholar 

  24. 24.

    G. Chai, L. Backerud, T. Rolland, L. Arnberg: Metallurical and Materials Transactions A, 1995, vol. 26, pp. 965- 976.

    CAS  Article  Google Scholar 

  25. 25.

    T. Sumitomo, D.H. StJohn, T. Steinberg: Materials Science and Engineering A, 2000, vol. 289, pp. 18-19.

    Article  Google Scholar 

  26. 26.

    B. Nagasivamuni, G. Wang, D.H. StJohn, and M.S. Dargusch: in Light Met. 2019, Light Met. Symp., TMS Annu. Meet. Exhib., C. Chesonis, ed., San Antonio, TX, 10–14 March 2019, pp. 1579–86.

  27. 27.

    J. Hutt & D. StJohn: International Journal of Cast Metals Research, 1998, vol. 11, pp. 13-22.

    CAS  Article  Google Scholar 

  28. 28.

    A. Ohno: The Solidification of Metals, Chijin Shokan Co., Tokyo, 1976.

    Google Scholar 

  29. 29.

    A.Ohno: Solidification - The Separation Theory and its Practical Applications, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, 1987

    Google Scholar 

  30. 30.

    Z. Yin, D. Liang, Y. Chen, Y. Cheng, Q. Zhai: Trans. Nonferrous Metals Soc. China, 2013, vol. 23, pp. 92–97.

    CAS  Article  Google Scholar 

  31. 31.

    Y.J. Li, W.Z. Tao, Y.S. Yang: J. Mater. Process. Technol., 2012, vol. 212, pp. 903–909.

    CAS  Article  Google Scholar 

  32. 32.

    I. Tzanakis, G.S.B Lebon, D. Eskin, K. Pericleous: Ultrasonics Sonochemistry, 2017, vol. 34, pp. 651–662.

    CAS  Article  Google Scholar 

  33. 33.

    S.D. McDonald, K. Nogita, A.K. Dahle: Acta Materitalia, 2004, vol. 52, pp. 4273-4280.

    CAS  Article  Google Scholar 

  34. 34.

    J. Hirsch, B. Skrotzki, G. Gottstein: Aluminium Alloys: Their Physical and Mechanical Properties (ICAA11), Wiley-VCH, Weinheim, 2008, pp. 316–320.

    Google Scholar 

  35. 35.

    A. Prasad, E. Liotti, S.D. McDonald, K. Nogita, H. Yasuda, P.S. Grant and D.H. StJohn: IOP Conference Series: Materials Science And Engineering, 2015, vol. 84, 012014, pp. 1-9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Defence Materials Technology Center (DMTC) which was established, and supported by the Australian Government’s Defence Future Capability Technology Centres Programme, the Australian Research Council Grant DP140100702, and the ExoMet Project co-funded by the European Commission’s 7th Framework Programme (Contract FP7-NMP3-LA-2012-280421), by the European Space Agency and by the individual partner organizations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 31, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, Q., Balasubramani, N. et al. The Role of Ultrasonically Induced Acoustic Streaming in Developing Fine Equiaxed Grains During the Solidification of an Al-2 Pct Cu Alloy. Metall Mater Trans A 50, 5253–5263 (2019). https://doi.org/10.1007/s11661-019-05448-x

Download citation