Influence of In Situ Thermal Processing Strategies on the Weldability of Martensitic Stainless Steel Resistance Spot Welds: Effect of Second Pulse Current on the Weld Microstructure and Mechanical Properties


Martensitic stainless steel (MSS) welds are notorious for their susceptibility to low-energy failure due to the formation of brittle martensitic structure in the fusion zone. The unique approach to enhance the mechanical properties of MSS resistance spot welds during both the tensile-shear and the cross-tension loading is to improve the fracture toughness of the fusion zone. In the present study, the effect of double-pulse welding on the microstructure-mechanical properties relationship of the AISI420 MSS resistance spot welds is investigated. Depending on the second pulse current level, various metallurgical phenomena was observed including (i) rapid tempering of martensite in the fusion zone featured by hardness reduction and precipitation of nano-sized carbide precipitates which resulted in remarkable improvement of the load-bearing capacity and energy absorption capability of the welds, (ii) re-austenitization of the fusion zone and reformation of the un-tempered martensite without improvement of the weld mechanical properties, (iii) temper embrittlement of the nugget edge which resulted in very low-energy grain-boundary failure, and (iv) nugget edge re-melting/enlargement which resulted in slight improvement of weld mechanical properties. Therefore, to enhance the mechanical properties of the MSS resistance spot welds using a two-pulse welding strategy, the second pulse parameters should be precisely controlled.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Reference 41, with permission

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    1.J. C. Lippold, D. J. Kotecki: Welding metallurgy and weldability of stainless steels, John Wiley & Sons, New Jersey, NJ, 2005, pp. 56-86.

    Google Scholar 

  2. 2.

    2.H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103–18.

    CAS  Article  Google Scholar 

  3. 3.

    Max: Martensitic Stainless Steel for Hot Stamping, Aperam, 2015.

  4. 4.

    P. Santacreu, G. Badinier, J. Moreau and J. Herbelin: SAE Technical Paper, 2015. SAE International, Warrendale

    Google Scholar 

  5. 5.

    J.D. Mithieux, G. Badinier, P.O. Santacreu, J.M. Herbelin and V. Kostoj: Proceedings of the 4th International Conference Hot Sheet Metal Forming of High performance Steel CHS2, June 9–12, Luleå, Sweden, 2013, pp. 57–65.

  6. 6.

    D. S. Codd: SAE International, 2011. SAE Technical Paper, 2011. SAE International, Warrendale

    Google Scholar 

  7. 7.

    7.V. J. Badheka, S. K. Agrawal, N. Shroff, Int J Mech Mater Eng, 2009, vol.4, pp.328-340.

    Google Scholar 

  8. 8.

    H. K. D. H. Bhadeshia and R. Honeycombe (2017) Steels: microstructure and properties, 4th edn. Butterworth-Heinemann, Oxford. pp. 237-70.

    Google Scholar 

  9. 9.

    9.G. R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043-54.

    CAS  Article  Google Scholar 

  10. 10.

    10.S.K. Bhambri: J. Mater.Sci., 1986, vol. 21, pp. 1741-46.

    CAS  Article  Google Scholar 

  11. 11.

    11.A.N. Isfahany, H. Saghafian and G. Borhani: J. Alloy. Compd., 2011, vol. 509, pp. 3931-36.

    CAS  Article  Google Scholar 

  12. 12.

    K. Chandra, V. Kain, N. Srinivasan, I. Samajdar and A.K. Balasubrahmanian: Adv. Mater. Res., 2013, vol. 794, pp. 757-765.

    Article  Google Scholar 

  13. 13.

    13.H. Sharifi, I. Kheirollahi-Hosseinabadi and R. Ghasemi: International Journal of ISSI, 2015, vol. 12, pp. 9-15.

    Google Scholar 

  14. 14.

    14.Ph. Lemble, A. Pineau, J.L. Castagne, Ph. Dumoulin and M. Guttmann: Metal. Sci., 1979, vol. 13, pp. 496-502.

    CAS  Article  Google Scholar 

  15. 15.

    G.V.P. Gaunkar, A.M. Huntz and P. Lacombe: Metal. Sci., 1980, vol. 14, pp. 241-52.

    CAS  Article  Google Scholar 

  16. 16.

    M. Sheikhi, M. ValaeeTale, GH.R. Usefifar and A. Fattah-Alhosseini (2017) Metall. Trans. A, vol. 48, pp. 5415–23.

    Article  Google Scholar 

  17. 17.

    17.N.D. Raath, D. Norman, I. Mcgregor, S. Hepple, R. Dashwood and D.J. Hughes: Metall. Trans. A, 2018, vol. 49, pp. 1536–51.

    Article  Google Scholar 

  18. 18.

    18.P. Eftekharmilani, E.M. Van der Aa, R. Petrov, M.J.M. Hermans and I.M. Richardson: Metall. Trans. A, 2018, vol. 49, pp. 6185-96.

    Article  Google Scholar 

  19. 19.

    M. Kimchi and D. H. Phillips (2018) Resistance Spot Welding: Fundamentals and Applications for the Automotive Industry. Morgan & Claypool, Williston. pp. 27-46

    Google Scholar 

  20. 20.

    20.S.S. Beni, M. Atapour, M.R. Salmani and R. Ashiri: Metall. Trans. A, 2019, vol. 50, pp. 2218-34.

    Article  Google Scholar 

  21. 21.

    21.H. Zhang and J. Senkara: Resistance welding: fundamentals and applications, 2006, Taylor & Francis CRC Press, Boca Raton, pp. 19-57.

    Google Scholar 

  22. 22.

    22.N. T. Williams and J. D. Parker: International Materials Reviews, 2004, vol. 49, pp. 45-75.

    CAS  Article  Google Scholar 

  23. 23.

    23.M. Pouranvari, S. P. H. Marashi: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 361-403.

    CAS  Article  Google Scholar 

  24. 24.

    24.M. Pouranvari: Mater. Sci. Technol.., 2017, vol. 33, pp. 1705-12.

    CAS  Article  Google Scholar 

  25. 25.

    25.V.J. Badheka, S. K. Agrawal and N. Shroff: International Journal of Mechanical and Materials Engineering (IJMME), 2009, vol. 5, pp. 43-52.

    Google Scholar 

  26. 26.

    26.M. Alizadeh-Sh, S. P. H. Marashi and M. Pouranvari: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 595-602.

    CAS  Article  Google Scholar 

  27. 27.

    27.M. Pouranvari: Mater. Sci. Eng. A, 2017, vol. 680, pp. 97-107.

    CAS  Article  Google Scholar 

  28. 28.

    28.M. Pouranvari and E. Safikhani: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 227-33.

    CAS  Article  Google Scholar 

  29. 29.

    29.H. Aghajani and M. Pouranvari: Sci. Technol. Weld. Join., 2019, vol. 24, pp. 185-192.

    CAS  Article  Google Scholar 

  30. 30.

    30.M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 520-26.

    CAS  Article  Google Scholar 

  31. 31.

    31.W. L. Chuko and J. E. Gould: Weld. J., 2002, vol. 81, pp. 1 s-7 s.

    Google Scholar 

  32. 32.

    V.H.B. Hernandez, Y. Okita and Y. Zhou: Weld J, 2012, vol. 91, pp. 278-85.

    Google Scholar 

  33. 33.

    G. Shi and SA. Westgate: TWI report, 2005. TWI, Cambridge

    Google Scholar 

  34. 34.

    34.S. Sajjadi-Nikoo, M. Pouranvari, A. Abedi and A. A. Ghaderi: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 71-78.

    CAS  Article  Google Scholar 

  35. 35.

    35.F. Nikoosohbat, Sh. Kheirandish, M. Goodarzi and M. Pouranvari: Mater. Technol., 2015, vol. 49, pp. 133–38.

    Google Scholar 

  36. 36.

    36.C. Sawanishi, T. Ogura and K. Taniguchi: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 52–59.

    CAS  Article  Google Scholar 

  37. 37.

    E.M. Van der Aa, M. Amirthalingam, J. Winter, D.N. Hanlon, M.J.M. Hermans, M. Rijnders, and I.M. Richardson (2015) Mathematical Modelling of Welding Phonomena 11. Verlag der Technischen Universität Graz, Graz. pp. 175–93.

    Google Scholar 

  38. 38.

    38.P. Eftekharimilani, E.M. van der Aa, M.J.M. Hermans and I.M. Richardson: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 545–54.

    CAS  Article  Google Scholar 

  39. 39.

    T. Koichi, O. Yasuaki and R. Ikeda: JFE Technical Report, 2015, pp. 85–91.

  40. 40.

    40.O. Martín, M. Pereda, J. I. Santos and J. M. Galán: J. Mater. Process. Technol., 2014, vol. 214, pp. 2478-87.

    Article  Google Scholar 

  41. 41.

    41.S. Kou: Welding metallurgy, 2nd ed, 2003, John Wiley & Sons, Inc., New Jersey, NJ, pp. 431-453.

    Google Scholar 

  42. 42.

    42.W. Chuko and J.E. Gould: Report to the American Iron and Steel Institute, U.S. Department of Energy, 2002.

    Google Scholar 

  43. 43.

    43.M. Pouranvari, M. Alizadeh-Sh and S.P.H. Marashi: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 502-11.

    CAS  Article  Google Scholar 

  44. 44.

    44.J.E. Gould, S.P. Khurana and T. Li: Weld. J., 2006, vol.85, pp. 111 s-116 s.

    Google Scholar 

  45. 45.

    45.W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol.183, pp.349–359.

    CAS  Google Scholar 

  46. 46.

    Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials. AWS/SAE D8.9 M: 2012.

  47. 47.

    47.J. C. Lippold: Welding metallurgy and weldability, John Wiley & Sons, New Jersey, NJ, 2015.

    Google Scholar 

  48. 48.

    48.L.F. Alvarez, C. Garcia and V. Lopez: ISIJ Int., 1994, vol. 34, pp. 516-21.

    CAS  Article  Google Scholar 

  49. 49.

    49.I. Yadroitsev, P. Krakhmalev and I. Yadroitsava: Addit. Manuf., 2015, vol. 7, pp. 45-56.

    CAS  Article  Google Scholar 

  50. 50.

    50. J. C. Lippold: J. Nuclear Materials 103&104, 1981, pp. 1127-32.

    Article  Google Scholar 

  51. 51.

    51. H. Matsuda, R. Mizuno, Y. Funakawa, K. Seto, S. Matsuoka and Y. Tanaka: J. Alloy. Compd., 2013, vol. 577, pp. S661-67.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Majid Pouranvari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 3, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aghajani, H., Pouranvari, M. Influence of In Situ Thermal Processing Strategies on the Weldability of Martensitic Stainless Steel Resistance Spot Welds: Effect of Second Pulse Current on the Weld Microstructure and Mechanical Properties. Metall Mater Trans A 50, 5191–5209 (2019).

Download citation