Study on the Influence of Prior Cold Work on Precipitation Behavior of 304HCu Stainless Steel During Isothermal Aging

Abstract

The precipitation strengthening behavior of 304HCu austenitic stainless steel during isothermal aging at 650 °C is studied under 10 and 20 pct prior cold-worked conditions. The age hardening behavior under these cold-working conditions have been studied using hardness and electrical conductivity measurements. The analysis of electrical conductivity and hardness variation, during isothermal aging at 650 °C using the Johnson–Mehl–Avrami equation, indicates an increase in precipitation kinetics in the matrix, influenced by the dislocations formed during cold working. Further, XRD profiles of different cold-worked samples obtained from the INDUS-2 synchrotron are able to indicate the formation of very fine precipitates during thermal aging and these findings are corroborated with conductivity and hardness changes. The observed change in precipitation kinetics due to deformation is analyzed to evaluate an equivalent change in activation energy which is attributed to an equivalent of increase in aging temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    R. Viswanathan and W. Bakker: J. Mater. Eng. Perform., 2001, vol. 10, pp. 83.

    Google Scholar 

  2. 2.

    P.S. Weitzel: Steam Generator for Advanced Ultra Supercritical Power Plants 700 °C to 760 °C, in Proc. ASME 2011 Power Conf., Denver, Colorado, USA, 2011, pp. 1–10.

  3. 3.

    R. Viswanathan, K. Coleman, and U. Rao: Int. J. Press. Vessels Pip., 2006, vol. 83, pp. 778-783.

    CAS  Article  Google Scholar 

  4. 4.

    D. Gandy, J.P. Shingledecker, P.J. Maziasz, G. Maurer, and J. Magee: Adv. Mater. Technol. Fossil Power Plants: Proc. Sixth Int. Conf., Santa Fe, New Mexico, USA, 2011, pp. 916–34.

  5. 5.

    I. Sen, E. Amankwah, N. S. Kumar, E. Fleury, K. Ohishi, K. Hono, and U. Ramamurty (2011) Mater. Sci. Eng. A, 528:4491-4499.

    Article  Google Scholar 

  6. 6.

    I.T. Hong and C.H. Koo: Mater. Sci. Eng. A, 2005, vol. 393, pp. 213-222.

    Article  Google Scholar 

  7. 7.

    TAN Shu-ping and Z. Wang (2010) J. Iron. Steel Res. Int, 17:63-68.

    Google Scholar 

  8. 8.

    A. Mathur, O.P. Bhutani, T. Jayakumar, D.K. Dubey, and S.C. Chetal: Adv. Mater. Technol. Fossil Power Plants: Proc. Seventh Int. Conf., Waikoloa, Hawaii, USA, 2013, pp. 53–59.

  9. 9.

    A. H. V. Pavan, K. S. N. Vikrant, R. Ravibharath, and K. Singh (2015) Mater. Sci. Eng. A, 542: 32-41.

    Article  Google Scholar 

  10. 10.

    Y. Sawaragi and S. Hirano: in New Alloys for Pressure Vessels and Piping, New York, 1990, pp. 141–146.

  11. 11.

    C Chi, H Yu, J Dong, X Xie, Z Cui, X Chen, and F Lin: Acta Metall. Sinica, vol. 24, pp. 141-147, 2011.

    CAS  Google Scholar 

  12. 12.

    ManmathkumarDash, T. Karthikeyan, R. Mythili, V.D. Vijayanand, and S. Saroja (2017) Metall. Mater. Trans. A, 48A: 4883-4894.

    Article  Google Scholar 

  13. 13.

    A. Iseda, H. Okada, H. Semba, and M. Igarashi: Energy Materials, 2007, vol. 2, pp. 199-206.

    CAS  Article  Google Scholar 

  14. 14.

    V. Ganesan, K. Laha, and A. K. Bhaduri: Trans Indian Inst Met, 2016, vol. 69, pp. 247-251.

    Article  Google Scholar 

  15. 15.

    X Huang, Q Zhou, W Wang, W S Li, and Y Gao: Mater. High Temp., 2017, vol. 35, pp. 438-450.

    Article  Google Scholar 

  16. 16.

    L Ren, L Nan, and K Yang: Mater. Des., 2011, vol. 32, pp. 2374-2379.

    CAS  Article  Google Scholar 

  17. 17.

    B. Dutta, E. J. Palmier, and C. M. Sellars: Acta mater., 2001, vol. 49, pp. 785-794.

    CAS  Article  Google Scholar 

  18. 18.

    Y Zhou, Y Liu, Y Liu, C Liu, J Yu, Y Huang, H Li, WL: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1448-1456.

    Article  Google Scholar 

  19. 19.

    S. Mahadevan, R. Manojkumar, T. Jayakumar, C. R. Das, and B. P.C. Rao: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3109-3118.

    Article  Google Scholar 

  20. 20.

    R. Manojkumar, S. Mahadevan, C. K. Mukhopadhyay, and B. P. C. Rao (2017) J. Mater. Res. 32: 4263-4271.

    CAS  Article  Google Scholar 

  21. 21.

    U. K. Viswanathan, P. K. K. Nayar, and R. Krishnan: Mater. Sci. Technol., 1989, vol. 5, pp. 346-349.

    CAS  Article  Google Scholar 

  22. 22.

    C. V. Robino, P. W. Hochanadel, G. R. Edwards, and M. J. Cieslak: Metallurgical and materials transactions A, 1994, vol. 25A, pp. 697-704.

    CAS  Article  Google Scholar 

  23. 23.

    VK Vasudevan, SJ Kim, and CM Wayman: Metall. Trans. A, 1990, vol. 21A, pp. 265-2668.

    Google Scholar 

  24. 24.

    E Kozeschnik, Modeling Solid-State Precipitation. 1st ed. Momentum Press, New york, USA, 2013.

    Google Scholar 

  25. 25.

    A.K. Sinha, A. Sagdeo, P. Gupta, A. Upadhyay, A. Kumar, M.N. Singh, R.K. Gupta, S.R. Kane, A. Verma, S.K. Deb (2013) J. Phys. Conf. Ser., 425: 072017.

    Article  Google Scholar 

  26. 26.

    J Jiang and L Zhu: Mater. Sci. Eng. A, 2012, vol. 539, pp. 170-176.

    CAS  Article  Google Scholar 

  27. 27.

    Q Zhou, S Ping, X Meng, R Wang, and Y Gao (2017) J. Mater. Eng. Perform., 26: 6130–6139.

    CAS  Article  Google Scholar 

  28. 28.

    S-M Hong, M-Y Kim, D-J Min, K Lee, J-H Shim, D-I Kim, J-Y Suh, W-S Jung, I-S Choi: Mater. Charact., 2014, vol. 94, pp. 7-13.

    CAS  Article  Google Scholar 

  29. 29.

    L Ren, J Zhu, L Nan, and K Yang: Mater.Des., 2011, vol. 32, pp. 3980-3985.

    CAS  Article  Google Scholar 

  30. 30.

    Y Zhou, C Liu, Y Liu, Q Guo, and H Li: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 283-293.

    CAS  Article  Google Scholar 

  31. 31.

    A. Boeuf, C. Crico, R. Caciuffo, F. Rustechelli, I. Pomot, G. Uny: Mater. Lett., 1985, vol. 3, pp. 115-118.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Shri. A. Viswanath and Smt. T. Nivedha, Non-Destructive Evaluation Division (NDED), Metallurgy and Materials Group (MMG), IGCAR, for their help in preparing the samples. The authors express their gratitude to Dr. A. K. Sinha and Dr. Archana Sagdeo, Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, for their involvement during the experiments at INDUS II synchrotron. The authors would also like to thank Dr. G. Amarendra, Director, MMG, IGCAR, and Dr. A. K. Bhaduri, Director, IGCAR, for their constant encouragement and support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Manojkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 4, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manojkumar, R., Mahadevan, S., Mukhopadhyay, C.K. et al. Study on the Influence of Prior Cold Work on Precipitation Behavior of 304HCu Stainless Steel During Isothermal Aging. Metall Mater Trans A 50, 5476–5482 (2019). https://doi.org/10.1007/s11661-019-05441-4

Download citation