Influence of Cr Content on the Microstructure and Electrochemical Corrosion in Plasma Cladding Ni-Cr Coatings

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ni-xCr (x = 20, 30 and 40 wt pct, respectively) alloy corrosion resistant coatings were manufactured on Q235 substrate by plasma cladding. The effects of the Cr content on the phase composition, microstructure, and corrosion resistance of the Ni-xCr coatings were investigated in detail. The results showed that the main phases of the Ni-xCr coatings were γ-[Ni, Fe] solid solutions with face-centered cubic (FCC) structure. Electrochemical corrosion tests of different polarization voltages showed that the inhomogeneous distribution of composition and the presence of the multiphase structure led to the occurrence of corrosion. The occurrence of the Cr-rich phase increased the sensitivity of the Cr-poor phase and further accelerated the corrosion process. The Ni-xCr coating with intermediate Cr content (Ni-30Cr) had the best corrosion resistance, which depends on the phase composition of the coating.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    H. Liu, Q. Xu, C. Wang and X. Zhang: J. Alloys Compd., 2015, vol. 621, pp. 357-363.

    CAS  Article  Google Scholar 

  2. 2.

    S. P. Sidel’nikova, V. V. Parshutin, G. F. Volodina, N. V. Chernyshova and A. V. Koval’: Russ. J. Appl. Chem., 2017, vol. 89, pp. 1740-1746.

    Article  Google Scholar 

  3. 3.

    P. SureshBabu, Y. Madhavi, L. RamaKrishna, D. SrinivasaRao and G. Padmanabham: Jom, 2018, vol. 70, pp. 2636-2649.

    CAS  Article  Google Scholar 

  4. 4.

    G. Y. Koga, W. Wolf, R. Schulz, S. Savoie, C. Bolfarini, C. S. Kiminami and W. J. Botta: Surf. Coat. Technol., 2019, vol. 357, pp. 993-1003.

    CAS  Article  Google Scholar 

  5. 5.

    5. M. F. Pillis, G. A. Geribola, G. Scheidt, E. G. de Araújo, M. C. L. de Oliveira and R. A. Antunes: Corros. Sci., 2016, vol. 102, pp. 317-325.

    CAS  Article  Google Scholar 

  6. 6.

    6. H. B. Lee and M. Y. Wu: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4667-4680.

    Article  Google Scholar 

  7. 7.

    R. Garg, N. Rajagopalan, M. Pyeon, Y. Gönüllü, T. Fischer, A. S. Khanna and S. Mathur: Surf. Coat. Technol., 2018, vol. 356, pp. 49-55.

    CAS  Article  Google Scholar 

  8. 8.

    Y. Q. Jiang, J. Li, Y. F. Juan, Z. J. Lu and W. L. Jia: J. Alloys Compd., 2019, vol. 775, pp. 1-14.

    CAS  Article  Google Scholar 

  9. 9.

    9. J. Liu, J. Li, X. Cheng and H. Wang: Metall. Mater. Trans. A, 2017, vol. 49, pp. 595-603.

    Google Scholar 

  10. 10.

    10. A. Kunyarong and K. Fakpan: Mater. Today: Proceedings, 2018, vol. 5, pp. 9244-9249.

    CAS  Google Scholar 

  11. 11.

    11. M. Q. Wan, J. Shi, L. Lei, Z. Y. Cui, H. L. Wang and X. Wang: J. Mater. Eng. Perform., 2018, vol. 27, pp. 2844-2854.

    CAS  Article  Google Scholar 

  12. 12.

    12. B. Liu, X. Wei, W. Wang, J. Lu and J. Ding: Sol. Energy Mater. Sol. Cells., 2017, vol. 170, pp. 77-86.

    CAS  Article  Google Scholar 

  13. 13.

    13. Z. Feng, M. Tang, Y. Liu, Z. Yan, G. Li and R. Zhang: Surf. Eng., 2017, vol. 34, pp. 309-315.

    Article  Google Scholar 

  14. 14.

    14. G. Jin, Y. Li, H. Cui, X. Cui and Z. Cai: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2412-2419.

    CAS  Article  Google Scholar 

  15. 15.

    15. J. Wen, H. Cui, N. Wei, X. Song, G. Zhang, C. Wang and Q. Song: J. Alloys Compd., 2017, vol. 695, pp. 2424-2433.

    CAS  Article  Google Scholar 

  16. 16.

    16. Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang and Y. Wu: Appl. Surf. Sci., 2017, vol. 396, pp. 1420-1426.

    CAS  Article  Google Scholar 

  17. 17.

    17. H. Sun, M. Guo, F. Meng and A. Liu: Trans. Indian Inst. Met., 2015, vol. 69, pp. 1369-1376.

    Article  Google Scholar 

  18. 18.

    18. Y. Lu, G. Lu, F. Liu, Z. Chen and K. Tang: J. Alloys Compd., 2015, vol. 637, pp. 149-154.

    CAS  Article  Google Scholar 

  19. 19.

    19. K. Liu, Y. Li and J. Wang: Mater. Des., 2016, vol. 105, pp. 171-178.

    CAS  Article  Google Scholar 

  20. 20.

    J. SopouSek, T. Kruml (1996) Scripta Mater. 35: 689-693.

    CAS  Article  Google Scholar 

  21. 21.

    21. V. Raghavan: J. Phase Equilib. Diffus., 2008, vol. 30, pp. 94-95.

    Article  Google Scholar 

  22. 22.

    22. J. Tomiska: J. Alloys Compd., 2004, vol. 379, pp. 176-187.

    CAS  Article  Google Scholar 

  23. 23.

    23. M. S. Kabir, P. Munroe, Z. Zhou and Z. Xie: Ceram. Int., 2018, vol. 44, pp. 11364-11373.

    CAS  Article  Google Scholar 

  24. 24.

    24. T.-T. Shun, L.-Y. Chang and M.-H. Shiu: Mater. Charact., 2012, vol. 70, pp. 63-67.

    CAS  Article  Google Scholar 

  25. 25.

    25. M. Wang, Z. Zhou, L. Wu, Y. Ding, F. Xu and Z. Wang: J. Therm. Spray Technol., 2018, vol. 27, pp. 769-777.

    CAS  Article  Google Scholar 

  26. 26.

    26. M. Yan and W. Z. Zhu: Surf. Coat. Technol., 1997, vol. 92, pp. 157-163.

    CAS  Article  Google Scholar 

  27. 27.

    27. J. Lei, C. Shi, S. Zhou, Z. Gu and L.-C. Zhang: Surf. Coat. Technol., 2018, vol. 334, pp. 274-285.

    CAS  Article  Google Scholar 

  28. 28.

    28. L. Zhang, D. Sun, H. Yu and H. Li: Mater. Sci. Eng. A, 2007, vol. 457, pp. 319-324.

    Article  Google Scholar 

  29. 29.

    29. Y. F. Juan, J. Li, Y. Q. Jiang, W. L. Jia and Z. J. Lu: Appl. Surf. Sci., 2019, vol. 465, pp. 700-714.

    CAS  Article  Google Scholar 

  30. 30.

    30. B. Sefer and S. Virtanen: Corros. Sci., 2019, vol. 154, pp. 287-304.

    CAS  Article  Google Scholar 

  31. 31.

    Ohmi T, Murota Y, Kirihara K, Kudoh M (2001) J. Jpn. Inst Met. 65:458-463.

    CAS  Article  Google Scholar 

  32. 32.

    32. J. J. Marattukalam, A. K. Singh, S. Datta, M. Das, V. K. Balla, S. Bontha and S. K. Kalpathy: Mater. Sci. Eng. C, 2015, vol. 57, pp. 309-13.

    CAS  Article  Google Scholar 

  33. 33.

    33. H. Luo, Q. Yu, C. Dong, G. Sha, Z. Liu, J. Liang, L. Wang, G. Han and X. Li: Corros. Sci., 2018, vol. 139, pp. 185-196.

    CAS  Article  Google Scholar 

  34. 34.

    A. Conde, R. Colaco, R. Vilar and J. D. Damboreaen: Mater. Des., 2000, vol. 21, pp. 441-445.

    CAS  Article  Google Scholar 

  35. 35.

    35. X. Gong, Y. Li, Y. Nie, Z. Huang, F. Liu, L. Huang, L. Jiang and H. Mei: Corros. Sci., 2018, vol. 139, pp. 68-75.

    CAS  Article  Google Scholar 

  36. 36.

    36. V. M. C. A. Oliveira, C. Aguiar, A. M. Vazquez, A. Robin and M. J. R. Barboza: Corros. Sci., 2014, vol. 88, pp. 317-327.

    CAS  Article  Google Scholar 

  37. 37.

    37. M. L. Zheludkevich, R. Serra, M. F. Montemor, K. A. Yasakau, I. M. M. Salvado and M. G. S. Ferreira: Electrochim. Acta, 2005, vol. 51, pp. 208-217.

    CAS  Article  Google Scholar 

  38. 38.

    38. J. B. Sun, G. A. Zhang, W. Liu and M. X. Lu: Corros. Sci., 2012, vol. 57, pp. 131-138.

    CAS  Article  Google Scholar 

  39. 39.

    39. H. Luo, Z. Li, A. M. Mingers and D. Raabe: Corros. Sci., 2018, vol. 134, pp. 131-139.

    CAS  Article  Google Scholar 

  40. 40.

    40. C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh and H. C. Shih: Corros. Sci., 2008, vol. 50, pp. 2053-2060.

    CAS  Article  Google Scholar 

  41. 41.

    41. B. Deng, Z. Wang, Y. Jiang, H. Wang, J. Gao and J. Li: Electrochim. Acta, 2009, vol. 54, pp. 2790-2794.

    CAS  Article  Google Scholar 

  42. 42.

    42. T. Poornima, N. Jagannatha and A. N. Shetty: Port. Electrochim. Acta, 2010, vol. 28, pp. 173-188.

    CAS  Article  Google Scholar 

  43. 43.

    43. M. P. Ryan, D. E. Williams, R. J. Chater, B. M. Hutton and D. S. McPhail: Nature, 2002, vol. 415, p 770.

    CAS  Article  Google Scholar 

  44. 44.

    44. S. K. Bonagani, V. Bathula and V. Kain: Corros. Sci., 2018, vol. 131, pp. 340-354.

    CAS  Article  Google Scholar 

  45. 45.

    45. J. Gong, Y. M. Jiang, B. Deng, J. L. Xu, J. P. Hu and J. Li: Electrochim. Acta, 2010, vol. 55, pp. 5077-5083.

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This research was supported by Distinguished Taishan Scholars in Climbing Plan (tspd20161006), National 863 Project Plan of China (2015AA034404), and the National Natural Science Foundation of China Youth Fund Project (Grant No. 51801114).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Canming Wang or Hongzhi Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 16, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, C., Song, Q. et al. Influence of Cr Content on the Microstructure and Electrochemical Corrosion in Plasma Cladding Ni-Cr Coatings. Metall Mater Trans A 50, 5410–5420 (2019). https://doi.org/10.1007/s11661-019-05440-5

Download citation