The Anisotropy of Serrated Flow Behavior of Al-Cu-Li (AA2198) Alloy

Abstract

The serrations in tensile stress–strain curves for Al-Cu-Li-based AA2198 alloy sheets were studied in various temper conditions. The alloy exhibited typical Portevin-Le-Chatelier effects with intense serrations in the stress–strain curves. This was observed in the solution-treated condition, while the intensity and frequency of serrations decreased upon aging. Detailed microscopic examination together with thermal stability studies showed the absence of δ′ (i.e., metastable Al3Li) precipitate in the alloy. As a result, the shearing of δ’ precipitates by dislocations during plastic deformation did not occur in the present alloy. The quasistatic tensile testing as a function of test temperature, strain rate and temper condition and the acoustic emission study confirmed that the combined interaction of copper and lithium atoms with mobile dislocations is the underlying mechanism for the plastic instability in this alloy. The alloy displayed significant anisotropic behavior in terms of mechanical properties and serration characteristics, and these observations are related to the difference in the effective grain size of the samples in various orientations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    RC Picu, G Vincze, F Ozturk, JJ Gracio, F Barlat and AM Maniatty, Materials Science and Engineering: A 2005, vol. 390, pp. 334-343.

    Article  Google Scholar 

  2. 2.

    YZ Shen, KH Oh and DN Lee, Materials Science and Engineering: A 2006, vol. 435, pp. 343-354.

    Article  Google Scholar 

  3. 3.

    A Portevin and F Le Chatelier, Comptes Rendus de l’Académie des Sciences Paris 1923, vol. 176, pp. 507-510.

    CAS  Google Scholar 

  4. 4.

    Ahmet Yilmaz, Science and technology of advanced materials 2011, vol. 12, p. 063001.

    Article  Google Scholar 

  5. 5.

    Győző Horváth, Nguyen Q Chinh, Jenő Gubicza and János Lendvai, Materials Science and Engineering: A 2007, vol. 445, pp. 186-192.

    Article  Google Scholar 

  6. 6.

    Alexis Deschamps, Benjamin Decreus, Frederic De Geuser, Thomas Dorin and Matthew Weyland, Acta Materialia 2013, vol. 61, pp. 4010-4021.

    CAS  Article  Google Scholar 

  7. 7.

    Andrzej Dziadoń, Scripta materialia 1996, vol. 34, pp. 375-380.

    Article  Google Scholar 

  8. 8.

    Zs Kovács, D Fátay, K Nyilas and J Lendvai, Journal of engineering materials and technology 2002, vol. 124, pp. 23-26.

    Article  Google Scholar 

  9. 9.

    XM Cheng and JG Morris, Scripta Materialia 2000, vol. 43, pp. 651-658.

    CAS  Article  Google Scholar 

  10. 10.

    D Thevenet, M Mliha-Touati and A Zeghloul, Materials Science and Engineering: A 1999, vol. 266, pp. 175-182.

    Article  Google Scholar 

  11. 11.

    Egidio Rizzi and Peter Hähner, International Journal of Plasticity 2004, vol. 20, pp. 121-165.

    CAS  Article  Google Scholar 

  12. 12.

    H Dierke, F Krawehl, S Graff, S Forest, J Šachl and H Neuhäuser, Computational Materials Science 2007, vol. 39, pp. 106-112.

    CAS  Article  Google Scholar 

  13. 13.

    GJ Fan, GY Wang, H Choo, PK Liaw, YS Park, BQ Han and EJ Lavernia, Scripta Materialia 2005, vol. 52, pp. 929-933.

    CAS  Article  Google Scholar 

  14. 14.

    Huifeng Jiang, Qingchuan Zhang, Xuedong Chen, Zhongjia Chen, Zhenyu Jiang, Xiaoping Wu and Jinghong Fan, Acta Materialia 2007, vol. 55, pp. 2219-2228.

    CAS  Article  Google Scholar 

  15. 15.

    A Chatterjee, A Sarkar, P Barat, P Mukherjee and N Gayathri, Materials Science and Engineering: A 2009, vol. 508, pp. 156-160.

    Article  Google Scholar 

  16. 16.

    E.O. Hall: Yield point phenomena in metals and alloys. Springer, Berlin, 2012.

    Google Scholar 

  17. 17.

    JM Gentzbittel and R Fougeres, Scripta metallurgica 1987, vol. 21, pp. 1411-1416.

    CAS  Article  Google Scholar 

  18. 18.

    JT Evans, Scripta metallurgica 1987, vol. 21, pp. 1435-1438.

    CAS  Article  Google Scholar 

  19. 19.

    PJ Gregson, DS McDarmaid and E Hunt, Materials science and technology 1988, vol. 4, pp. 713-718.

    CAS  Article  Google Scholar 

  20. 20.

    JC Huang and GT Gray, Scripta metallurgica et materialia 1990, vol. 24, pp. 85-90.

    CAS  Article  Google Scholar 

  21. 21.

    Subodh Kumar, Janusz Król and Erwin Pink, Scripta Materialia 1996, vol. 35, pp. 775-780.

    CAS  Article  Google Scholar 

  22. 22.

    M Cieslar, P Vostrý and I Stulíková, Phys. Status Solidi (a) 1996, vol. 157, pp. 217-227.

    CAS  Article  Google Scholar 

  23. 23.

    F Chmelık, E Pink, J Król, J Balık, J Pešička and P Lukáč, Acta Materialia 1998, vol. 46, pp. 4435-4442.

    Article  Google Scholar 

  24. 24.

    Erwin Pink, Subodh Kumar and Baohui Tian, Materials Science and Engineering: A 2000, vol. 280, pp. 17-24.

    Article  Google Scholar 

  25. 25.

    DL Sun, DZ Yang and TQ Lei, Materials Chemistry and Physics 1990, vol. 25, pp. 307-313.

    CAS  Article  Google Scholar 

  26. 26.

    S Kumar and HB McShane, Scripta metallurgica et materialia 1993, vol. 28, pp. 1149-1154.

    CAS  Article  Google Scholar 

  27. 27.

    S Kumar and E Pink, Acta Materialia 1997, vol. 45, pp. 5295-5301.

    CAS  Article  Google Scholar 

  28. 28.

    SJ Zambo and JA Wert, Scripta metallurgica et materialia 1993, vol. 29, pp. 1523-1528.

    CAS  Article  Google Scholar 

  29. 29.

    H. Ovri and E. T. Lilleodden, Acta Materialia 2015, vol. 89, pp. 88-97.

    CAS  Article  Google Scholar 

  30. 30.

    LP Kubin, A Styczynski and Y Estrin, Scripta metallurgica et materialia 1992, vol. 26, pp. 1423-1428.

    CAS  Article  Google Scholar 

  31. 31.

    Subodh Kumar, Scripta metallurgica et materialia 1995, vol. 33, pp. 81-86.

    CAS  Article  Google Scholar 

  32. 32.

    BH Tian, YG Zhang and CQ Chen, Materials Science and Engineering: A 1998, vol. 254, pp. 227-233.

    Article  Google Scholar 

  33. 33.

    F Zeides and I Roman, Scripta metallurgica et materialia 1990, vol. 24, pp. 1919-1922.

    CAS  Article  Google Scholar 

  34. 34.

    N Ilić, DJ Drobnjak, V Radmilović, MT Jovanović and D Marković, Scripta materialia 1996, vol. 34, pp. 1123-1130.

    Article  Google Scholar 

  35. 35.

    AK Vasudevan, WG Fricke, RC Malcolm, RJ Bucci, MA Przystupa and F Barlat, Metallurgical Transactions A 1988, vol. 19, pp. 731-732.

    Article  Google Scholar 

  36. 36.

    KK Cho, YH Chung, CW Lee, SI Kwun and MC Shin, Scripta Materialia 1999, vol. 40, pp. 651-657.

    CAS  Article  Google Scholar 

  37. 37.

    A. Cho, Z. Long, B. Lisagor, T. Bales, M.S. Domack, J.A. Wagner: in Materials Science Forum, Trans Tech Publ, 2006, pp. 1585–1590.

  38. 38.

    R. Shabadi, S. Kumar, H. J. Roven, E.S. Dwarakadasa, Mater. Sci. Eng. A 2004, vol. 382, pp. 203-208.

    Article  Google Scholar 

  39. 39.

    J Mizera and KJ Kurzydlowski, Scripta Materialia 2001, vol. 45, pp. 801-806.

    CAS  Article  Google Scholar 

  40. 40.

    A Deschamps, M Garcia, J Chevy, B Davo and F De Geuser, Acta Materialia 2017, vol. 122, pp. 32-46.

    CAS  Article  Google Scholar 

  41. 41.

    PJ Gregson, HM Flower, CNJ Tite and AK Mukhopadhyay, Materials science and technology 1986, vol. 2, pp. 349-353.

    CAS  Article  Google Scholar 

  42. 42.

    AK Jena, AK Gupta and MC Chaturvedi, Acta Metallurgica 1989, vol. 37, pp. 885-895.

    CAS  Article  Google Scholar 

  43. 43.

    H.H. Jo and K.-I. Hirano, in Materials Science Forum, Trans Tech Publ, 1987, pp. 377–382.

  44. 44.

    AK Mukhopadhyay, GJ Shiflet and EA Starke Jr, Scripta Metallurgica et Materialia 1990, vol. 24, pp. 307-312.

    CAS  Article  Google Scholar 

  45. 45.

    G Sha, RKW Marceau, X Gao, BC Muddle and SP Ringer, Acta Materialia 2011, vol. 59, pp. 1659-1670.

    CAS  Article  Google Scholar 

  46. 46.

    L Kovarik, SA Court, HL Fraser and MJ Mills, Acta Materialia 2008, vol. 56, pp. 4804-4815.

    CAS  Article  Google Scholar 

  47. 47.

    N. Nayan, S.V.S. NarayanaMurty, A.K. Mukhopadhyay, K.S. Prasad, A.K. Jha, B. Pant, S.C. Sharma, K.M. George, Mater. Sci. Eng. A 2013, vol. 585, pp. 475-479.

    CAS  Article  Google Scholar 

  48. 48.

    B Decreus, A Deschamps, F De Geuser, P Donnadieu, C Sigli and M Weyland, Acta Materialia 2013, vol. 61, pp. 2207-2218.

    CAS  Article  Google Scholar 

  49. 49.

    Thomas Dorin, Alexis Deschamps, Frédéric De Geuser, Williams Lefebvre and Christophe Sigli, Philosophical Magazine 2014, vol. 94, pp. 1012-1030.

    CAS  Article  Google Scholar 

  50. 50.

    WM Webernig, E Pink and J Krol, Zeitschrift fuer Metallkunde 1986, vol. 77, pp. 188-192.

    CAS  Google Scholar 

  51. 51.

    NQ Chinh, F Csikor, Z Kovács J Lendvai, J. Mater. Res., 2000, vol. 15, pp. 1037-1040.

    CAS  Article  Google Scholar 

  52. 52.

    Avraham Rosen, Materials Science and Engineering 1971, vol. 7, pp. 191-202.

    CAS  Article  Google Scholar 

  53. 53.

    CR Heiple and SH Carpenter, Journal of Acoustic Emission 1987, vol. 6, pp. 177-204.

    CAS  Google Scholar 

  54. 54.

    CR Heiple, SH Carpenter and MJ Carr, Metal Science 1981, vol. 15, pp. 587-598.

    Article  Google Scholar 

  55. 55.

    CH Caceres and AH Rodriguez, Acta Metallurgica 1987, vol. 35, pp. 2851-2864.

    CAS  Article  Google Scholar 

  56. 56.

    F Chmelik, Z Trojanova, Z Převorovský and P Lukáč, Materials Science and Engineering: A 1993, vol. 164, pp. 260-265.

    Article  Google Scholar 

  57. 57.

    PG McCormick, Philosophical Magazine 1971, vol. 23, pp. 949-956.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of Indian Space Research Organization (ISRO), and Defence Research and Development Organization (DRDO), Government of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. S. Narayana Murty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 4, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 477 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nayan, N., Narayana Murty, S.V.S., Sarkar, R. et al. The Anisotropy of Serrated Flow Behavior of Al-Cu-Li (AA2198) Alloy. Metall Mater Trans A 50, 5066–5078 (2019). https://doi.org/10.1007/s11661-019-05431-6

Download citation