Skip to main content
Log in

Analytical Description of the Influence of the Welding Parameters on the Hot Cracking Susceptibility of Laser Beam Welds in Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 05 November 2019

This article has been updated

Abstract

The grain structure of a weld seam influences its susceptibility to hot cracking during the welding process. The previously derived explicit analytical expressions allow for the accurate prediction of both the morphology of the grain structure and the grain size in a wide range of processing parameters. This model is now combined with the pressure balance model of Rappaz, which describes the formation of hot cracks by the balance between solidification shrinkage and thermomechanical deformation. The combination of the two models allows for the description of the impact of the welding parameters on the strain rate limit that a laser welded seam can withstand without the formation of hot cracks. It reveals that the absorbed line energy per depth is the key parameter to influence the value of this limit. The model was validated for the case of laser beam welding of the technical aluminum alloy AA6016. The calculated critical strain rates agree well with the experimentally determined critical strain rates measured by means of digital image correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 05 November 2019

    In the original article the indefinite integral sign of the solidification path is missing in Eq. [5].

Notes

  1. The values of Δpd, Δpc, Δpsh, and Δpε are positive in case of a pressure drop.

References

  1. N. N. Rykalin and C. Fritzsche: Berechnung der Wärmevorgänge beim Schweissen, Verlag Technik, Berlin, 1957.

    Google Scholar 

  2. C. Hagenlocher, F. Fetzer, D. Weller, R. Weber and T. Graf: Materials & Design, 2019, vol.174, p. 107791.

    Article  CAS  Google Scholar 

  3. Z. Tang and F. Vollertsen: Welding in the World, 2014, vol.58, pp. 355–366.

    Article  CAS  Google Scholar 

  4. N. Coniglio and C. E. Cross: International Materials Reviews, 2013, vol.58, pp. 375–397.

    Article  CAS  Google Scholar 

  5. L. J. Barker: Trans. ASM, 1950, vol.42, p. 347.

    Google Scholar 

  6. M. Rappaz, J.-M. Drezet and M. Germaud: Metallurgical and Materials Transactions A, 1999, vol.30, pp. 449–455.

    Article  CAS  Google Scholar 

  7. C. Hagenlocher, P. Stritt, R. Weber and T. Graf: Optics and Lasers in Engineering, 2018, vol.100, pp. 131–140.

    Article  Google Scholar 

  8. N. Bakir, V. Pavlov, S. Zavjalov, S. Volvenko, A. Gumenyuk and M. Rethmeier: Welding in the World, 2019, vol.63, pp. 435–441.

    Article  CAS  Google Scholar 

  9. V. Quiroz, A. Gumenyuk and M. Rethmeier: Journal of strain analysis, 2012, vol.47, pp. 587–599.

    Article  Google Scholar 

  10. C. Gollnow and T. Kannengießer: Welding in the World, 2013, vol.57, pp. 277–284.

    Google Scholar 

  11. U. Feurer: Giessereiforschung, 1976, vol.28, pp. 75–80.

    CAS  Google Scholar 

  12. W. S. Pellini and W. R. Applett: Welding Journal, 1954, vol.33, pp. 83–90.

    Google Scholar 

  13. W. S. Pellini: Foundry, 1952, vol.80, pp. 125–199.

    Google Scholar 

  14. N. Coniglio and C. E. Cross: Metallurgical and Materials Transactions A, 2009, vol.40, pp. 2718–2728.

    Article  CAS  Google Scholar 

  15. C. Hagenlocher, D. Weller, R. Weber and T. Graf: Science and Technology of Welding and Joining, 2019, vol.24, pp. 313–319.

    Article  CAS  Google Scholar 

  16. D. Weller, C. Hagenlocher, T. Steeb, R. Weber and T. Graf: Procedia CIRP, 2018, vol.74, pp. 430–433.

    Article  Google Scholar 

  17. N. Coniglio, C. E. Cross, T. Michael and M. Lammers: Welding Journal, 2008, vol.87, pp. 237–247.

    Google Scholar 

  18. E. Cicala, G. Duffet, H. Andrzejewski, D. Grevey and S. Ignat: Materials Science and Engineering A, 2005, vol.395, pp. 1–9.

    Article  Google Scholar 

  19. J. Wang, H.-P. Wang, X. Wang, H. Cui and F. Lu: Optics & Laser Technology, 2015, vol.66, pp. 15–21.

    Article  CAS  Google Scholar 

  20. Y. Zhang, F. Lu, H. Cui, Y. Cai, S. Guo and X. Tang: The International Journal of Advanced Manufacturing Technology, 2016, vol.86, pp. 2895–2904.

    Article  Google Scholar 

  21. M. Holzer, K. Hofmann, V. Mann, F. Hugger, S. Roth and M. Schmidt: Physics Procedia, 2016, vol.83, pp. 463–471.

    Article  CAS  Google Scholar 

  22. H. Wei, J. S. Chen, H.-P. Wang and B. E. Carlson: Journal of Laser Applications, 2016, vol.28, p. 22405.

    Article  Google Scholar 

  23. P. Stritt, R. Weber, T. Graf, S. Mueller, and J.-P. Weberpals: Proc. of ICALEO’12, 2012.

  24. H. Langrieger, F. Krafft, M. Mensinger, and F. Oefele: Journal of Laser Applications, 2016, vol. 28, p. 022414.

    Article  Google Scholar 

  25. J.-M. Drezet and D. Alleheaux: Hot Cracking Phenomena in Welds II, 2008, Springer, Berlin, pp. 19–38.

    Google Scholar 

  26. M. Rappaz, P.D. Grasso, V. Mathier, J.M. Drezet, and A. Jacot: Proc. of TMS, 2004, pp. 179–90.

  27. S. Kou: Welding Metallurgy, 2nd ed, John Wiley & Sons, Hoboken, 2003.

    Google Scholar 

  28. J. Kozeny: Proc. Class I, 1927, Royal Academy of Science, Vienna, vol. 136, pp. 271–306.

  29. P. C. Carman: Trans. Inst. Chem. Eng, 1937, vol.15, pp. 150–166.

    CAS  Google Scholar 

  30. J.F. Grandfield, C.J. Davidson, and J.A. Taylor: Contin. Cast., 2000, vol. 24, pp. 205–210.

    Google Scholar 

  31. E. Scheil: Zeitschrift für Metallkunde, 1942, vol.34, pp. 70–72.

    Google Scholar 

  32. J.-O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman: Calphad, 2002, vol.26, pp. 273–312.

    Article  CAS  Google Scholar 

  33. C. Kammer: Aluminium Taschenbuch, 15th ed, Aluminium Verlag, Düsseldorf, 1998.

    Google Scholar 

  34. T. Magnusson and L. Arnberg: Metallurgical and Materials Transactions A, 2001, vol.32, pp. 2605–2613.

    Article  CAS  Google Scholar 

  35. A. Gouffé: Revue D’Optique Théorique et Instrumentale, 1945, vol.24, pp. 1–10.

    Google Scholar 

  36. M. Kutsuna, K. Shido and T. Okada: Proc. of First International Symposium on High-Power Laser Macroprocessing, 2003, pp. 230–35.

  37. Standard: SEP 1220-3, 2011.

  38. D. Weller, C. Bezençon, P. Stritt, R. Weber and T. Graf: Physics Procedia, 2013, vol. 41, pp. 164–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Constellium and funded in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—389369540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hagenlocher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagenlocher, C., Weller, D., Weber, R. et al. Analytical Description of the Influence of the Welding Parameters on the Hot Cracking Susceptibility of Laser Beam Welds in Aluminum Alloys. Metall Mater Trans A 50, 5174–5180 (2019). https://doi.org/10.1007/s11661-019-05430-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05430-7

Navigation