The Positive Effect of Hydrogen Alloying on the Phase Tailoring and Mechanical Properties of Sintered Ti-13Nb SMAs

Abstract

The effect of hydrogen alloying on phase tailoring and mechanical properties of the sintered Ti-13Nb (at pct) shape memory alloy (SMA) was investigated. It was found that hydrogen addition changed the microstructure of the sintered Ti-13Nb-(0-31)H (at pct) alloys gradually from α + β dual phase to single β phase due to the lowered transition temperature of β phase to α phase by hydrogen action. The reduction of α phase precipitation in the alloy reduced the amount of Nb squeezed out from the Nb-depleted α phase, and consequently decreased the mean Nb content in the β phase. Thus, the Ms temperature of Ti-13Nb alloy was successfully increased from lower temperature to near room temperature, which consequently enhanced the recoverable strain of the alloy by easier martensitic transformation. The sintered Ti-13Nb-18H alloy presented a Ms temperature of 22 °C and a remarkable recoverable strain of 3.9 pct at room temperature, which is the highest value ever reported in the sintered Ti-Nb based SMAs. Meanwhile, the Ti-13Nb-18H alloy exhibited a fracture strain of 23.1 pct and a fracture strength of 1321 MPa, both better than that of the Ti-13Nb alloy, which was attributed to the hydrogen atoms in the alloy which caused solid solution strengthening and also increased the content of the β phase with higher plasticity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    M. Semlitsch, F. Staub and H. Weber: Biomed. Tech., 1985, vol. 30, pp. 334-39.

    CAS  Article  Google Scholar 

  2. 2.

    M. Es-Souni, M. Es-Souni and H. Fischer-Brandies: Anal. Bioanal. Chem., 2005, vol. 38, pp. 557-67.

    Article  Google Scholar 

  3. 3.

    E. Denkhaus and K. Salnikow: Crit. Rev. Oncol. Hematol., 2002, vol. 42, pp. 35-56.

    CAS  Article  Google Scholar 

  4. 4.

    A. Biesiekierski, J. Wang, M.A.H. Gepreel and C. Wen: Acta Biomater., 2012, vol. 8, pp. 1661-69.

    CAS  Article  Google Scholar 

  5. 5.

    A.R.G. Brown, D. Clark, J. Eastabrook and K.S.Jepsom: Nature., 1964, vol. 201, pp. 914-15.

    CAS  Article  Google Scholar 

  6. 6.

    H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda and S. Miyazaki: Acta. Mater., 2006, vol. 54, pp. 2419-29.

    CAS  Article  Google Scholar 

  7. 7.

    D.J. Lin, C.C. Chuang, J.H.C. Lin, J.W. Lee, C.P. Ju and H.S. Yin: Biomaterials., 2007, vol. 28, pp. 2582-89.

    CAS  Article  Google Scholar 

  8. 8.

    W.F. Ho: J. Alloy. Compd., 2008, vol. 464, pp. 580-83.

    CAS  Article  Google Scholar 

  9. 9.

    J.I. Kim, H.Y. Kim, T. Inamura, H. Hosoda and S. Miyazaki: Mater. Sci. Eng. A., 2005, vol. 403, pp. 334-39.

    Article  Google Scholar 

  10. 10.

    J.Y. Rho, T.Y. Tsui and G.M. Pharr: Biomaterials., 1997, vol. 18, pp. 1325-30.

    CAS  Article  Google Scholar 

  11. 11.

    V. Karageorgiou and D. Kaplan: Biomaterials., 2005, vol. 26, pp. 5474-91.

    CAS  Article  Google Scholar 

  12. 12.

    J. Shen, B. Chen, J. Umeda and K. Kondoh: Mater. Sci. Eng. A., 2018, vol. 716, pp. 1-10.

    CAS  Article  Google Scholar 

  13. 13.

    V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik and M.Filonov: Mater. Sci. Eng. C., 2011, vol. 31, pp. 643-57.

    CAS  Article  Google Scholar 

  14. 14.

    J.I. Kim II, H.Y. Kim, H. Hosoda, S. Miyazaki, H.Y. Kim, H. Hosoda and S. Miyazaki: Mater. Trans., 2005, vol. 46, pp. 852-57.

    CAS  Article  Google Scholar 

  15. 15.

    M. Lai, Y. Gao, B. Yuan and M. Zhu: Mater. Des., 2014, vol. 60, pp. 193-97.

    CAS  Article  Google Scholar 

  16. 16.

    Yuan B, Yang B, Gao Y, Lai M, Chen XH: Mater. Des., 2016, 92, 978-982.

    CAS  Article  Google Scholar 

  17. 17.

    J. Wu, H. Li, B. Yuan and Y. Gao: J. Mech. Behav. Biomed. Mater., 2017, vol. 75, pp. 574-80.

    CAS  Article  Google Scholar 

  18. 18.

    M. Lai, Y. Gao, B. Yuan and M. Zhu: Mater. Des., 2015, vol. 87, pp. 466-72.

    CAS  Article  Google Scholar 

  19. 19.

    S. Miyazaki, H.Y. Kim and H. Hosoda: Mater. Sci. Eng. A., 2006, vol. 438, pp. 18-24.

    Article  Google Scholar 

  20. 20.

    D.L. Moffat and U.R. Kattner: Metall. Mater. Trans. A, 1988, vol. 19, pp. 2389-97.

    CAS  Article  Google Scholar 

  21. 21.

    A. Martin and F.D. Manchester: Bull. Alloy. Phase. Diagrams., 1987, 8, 30-42.

    Article  Google Scholar 

  22. 22.

    [22] H. Okamoto: J. Phase: Equilib. Diffus., 2013, vol. 34, pp. 163-64.

    CAS  Google Scholar 

  23. 23.

    B.G. Yuan: Microstructure and property of hydrogenated titanium alloy, Metallurgical Industry Press, Bei Jing, 2015, pp. 6.

    Google Scholar 

  24. 24.

    W.H. Bragg and W.L. Bragg: Proc. R. Soc. A., 1913, vol. 88, pp. 428-38.

    CAS  Article  Google Scholar 

  25. 25.

    Hin A A: Izv. Vyssh. Uchebn. Zaved. Tsvetn., 1987, vol. 1, pp. 96-101.

    Google Scholar 

  26. 26.

    Q. Chen and G.A. Thouas: Mater. Sci. Eng. R., 2015, vol. 87, pp. 1-57.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Guangdong Provincial Science and Technology Projects (2016A030311012) and Key Laboratory of Advanced Energy Storage Materials of Guangdong Province.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 26, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Yuan, B. & Gao, Y. The Positive Effect of Hydrogen Alloying on the Phase Tailoring and Mechanical Properties of Sintered Ti-13Nb SMAs. Metall Mater Trans A 50, 5525–5532 (2019). https://doi.org/10.1007/s11661-019-05411-w

Download citation