Effect of Different Cooling Media After Solid Solution on the Microstructure and Yield Strength in a Ni-Al Alloy During Aging: Experimental Measurement and Computational Modeling


In this paper, the effect of different cooling media, i.e., water quenching, air cooling and furnace cooling, after solid solution treatment on the microstructure and yield strength of Ni-15.9Al at. pct alloy during aging at 800 °C was first experimentally investigated. It was found that the morphologies and the particle sizes of γ′ precipitates as well as the yield strength of the target alloys during aging were strongly affected by the cooling media after solid solution. The yield strengths of the target alloys after aging with water quenching and air cooling after solid solution are similar, and higher than that with furnace cooling. By further considering the cost and environment factors, the air cooling after solid solution treatment was thus proposed for industry alloys. Meanwhile, a quantitative simulation of the microstructure evolution in the target alloy during aging was realized by means of phase-field modeling coupling with CALPHAD thermodynamic and atomic mobility descriptions. Moreover, the extracted experimental microstructure of the Ni-15.9Al at. pct alloy with air cooling after solid solution was inputted as the initial microstructure of phase-field simulation. Subsequently, the microstructural features obtained from both phase-field simulations and experiments were imported into the strengthening models to predict the evolution of the total yield strengths during aging. The model-predicted total yield strengths in the Ni-15.9Al at. pct alloy were found to be in the excellent agreement with the experimental results from the tensile tests.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    M.V. Nathal and L.J. Ebert: Metall. Trans. A, 1985, vol. 16, pp. 427-39.

    Article  Google Scholar 

  2. 2.

    R.C. Reed, The Superalloy Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  3. 3.

    Z.W. Wei, C.K. Liu, Y.L. Gu and C.H. Tao: J. Aeronaut. Mater., 2015, vol. 35, pp. 70-74. (in Chinese)

    CAS  Google Scholar 

  4. 4.

    D.M. Collins and H.J. Stone: Int. J. Plast., 2014, vol. 54, pp. 96-112.

    CAS  Article  Google Scholar 

  5. 5.

    C. Li, R. White, X.Y. Fang, M. Weaver and Y.B. Guo: Mater. Sci. Eng. A, 2017, vol. 705, pp. 20-31.

    CAS  Article  Google Scholar 

  6. 6.

    M. Rahimian, S. Milenkovic and I. Sabirov: J. Alloys Compd., 2013, vol. 550, pp. 339-344.

    CAS  Article  Google Scholar 

  7. 7.

    G.E. Fuchs: Mater. Sci. Eng. A, 2001, vol. 300, pp. 52-60.

    Article  Google Scholar 

  8. 8.

    J.T. Guo, Materials Science and Engineering for Superalloys, first ed., Science press, Beijing, 2008.

    Google Scholar 

  9. 9.

    J. Yu, X. Sun, N. Zhao, T. Jin, H. Guan and Z. Hu: Mater. Sci. Eng. A, 2007, vol. 460, pp. 420-27.

    Article  Google Scholar 

  10. 10.

    G.B. Olson: Science, 1997, vol. 277, pp. 1237- 42.

    CAS  Article  Google Scholar 

  11. 11.

    D.L. McDowell and G.B. Olson: Sci. Model. Simul., 2008, vol. 15, pp. 207-40.

    CAS  Article  Google Scholar 

  12. 12.

    R.C. Reed, T. Tao and N. Warnken: Acta Mater., 2009, vol. 57, pp. 5898-13.

    CAS  Article  Google Scholar 

  13. 13.

    L. Zhang and Y. Du: J. Phase Equilib. Diffus., 2016, vol. 37, pp: 259-60.

    Article  Google Scholar 

  14. 14.

    N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries and I. Steinbach: Acta Mater., 2009, vol. 57, pp. 5862-75.

    CAS  Article  Google Scholar 

  15. 15.

    15] D. Cao, N. Ta and L. Zhang: Prog. Nat. Sci., 2017, vol. 27, pp. 678-86.

    CAS  Article  Google Scholar 

  16. 16.

    N. Ta, L. Zhang and Y. Du: Metall. Mater. Trans A, 2014, vol.45, pp. 1787-802.

    Article  Google Scholar 

  17. 17.

    L. Zhang, I. Steinbach and Y. Du: Int. J. Mater. Res., 2011, vol. 102, pp. 371-80.

    CAS  Article  Google Scholar 

  18. 18.

    N. Ta, L. Zhang, Y. Tang, W.M. Chen and Y. Du: Surf. Coat. Technol., 2015, vol. 261, pp. 364-74.

    CAS  Article  Google Scholar 

  19. 19.

    A.J. Ardell: Metall. Trans. A., 1985, vol.16, pp. 2131-65.

    CAS  Article  Google Scholar 

  20. 20.

    B. Reppich: Acta Mater., 1982, vol. 30, pp: 87-94.

    CAS  Article  Google Scholar 

  21. 21.

    L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier, Amesterdam, The Netherlands, 1971, pp. 9-135.

    Google Scholar 

  22. 22.

    MICRESS: The MICRostructure Evolution Simulation Software. www.micress.de.

  23. 23.

    I. Steinbach, Model. Simul. Mater. Sci. Eng., 2009, vol. 17, pp. 073001-31.

    Article  Google Scholar 

  24. 24.

    M.K. Rajendran, O. Shchyglo, and I. Steinbach: MATEC Web of Conferences, EDP Sciences, 2014, vol. 14, pp. 11001.

  25. 25.

    Y. Du and N. Clavaguera: J. Alloys Compd., 1996, vol. 247, pp. 20–30.

    Article  Google Scholar 

  26. 26.

    L. Zhang, Y. Du, Q. Chen, and I. Steinbach: Int. J. Mater. Res., 2010, vol. 101, pp. 1461–75.

    CAS  Article  Google Scholar 

  27. 27.

    J. Gao, M. Wei, L. Zhang, Y. Du, Z.M. Liu and B.Y. Huang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 944-52.

    Google Scholar 

  28. 28.

    Y.H. Wen, B. Wang, J.P. Simmons and Y. Wang: Acta Mater., 2006, vol. 54, pp. 2087-99.

    CAS  Article  Google Scholar 

  29. 29.

    M.R. Ahmadi, E. Povoden-Karadeniz, L. Whitmore, M. Stockinger, A. Falahati and E. Kozeschnik: Mater. Sci. Eng. A, 2014, vol. 608, pp. 114-22.

    CAS  Article  Google Scholar 

  30. 30.

    E.O. Hall: Proc. Phys. Soc. London B, 1951, vol. 64, pp. 747-53.

    Article  Google Scholar 

  31. 31.

    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

    CAS  Google Scholar 

  32. 32.

    F. Wallow and E. Nembach: Scripta Metall., 1996, vol. 34, pp. 499–505.

    CAS  Article  Google Scholar 

  33. 33.

    M.Z. Butt and P. Feltham: J. Mater. Sci., 1993, vol. 28, pp. 2557-76.

    CAS  Article  Google Scholar 

  34. 34.

    C.T. Sim and W.C. Hagel: The Super alloy, Wiley, New York, 1973.

    Google Scholar 

  35. 35.

    R. Labush and R. B. Schwarz: J. Appl. Phys.,1978, vol. 49, pp. 5174–87.

    Article  Google Scholar 

  36. 36.

    S.K. Kar and S.K. Sondhi: Mater. Sci. Eng. A, 2014, vol. 601, pp. 97-105.

    CAS  Article  Google Scholar 

  37. 37.

    W. Hüther and B. Reppich: Mater. Sci. Eng., 1979, vol.39, pp. 247-59.

    Article  Google Scholar 

  38. 38.

    U.F. Kocks: in Proc. 5th. Conf. on the Strength of Metals and Alloys, Aachen, 1979, vol. 1, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon, Oxford, 1980, p. 1661.

Download references


The work was supported by the Youth Talent Project of Innovation-driven Plan at Central South University (Grant No. 2019CX027), and the Hunan Provincial Science and Technology Program of China (Grant No. 2017RS3002)—Huxiang Youth Talent Plan. Ming Wei acknowledges the financial support from the program of China Scholarship Council (No. 201706370128).

Author information



Corresponding author

Correspondence to Lijun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 17, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Li, G., Wei, M. et al. Effect of Different Cooling Media After Solid Solution on the Microstructure and Yield Strength in a Ni-Al Alloy During Aging: Experimental Measurement and Computational Modeling. Metall Mater Trans A 50, 4920–4930 (2019). https://doi.org/10.1007/s11661-019-05400-z

Download citation