Quench Sensitivity of AA 7136 Alloy: Contribution of Grain Structure and Dispersoids


Quench sensitivity of the extruded AA7136 alloy plate specimens with coarse elongated recrystallized grains (CG), fine equiaxed recrystallized grains (EG), and fibrous partial-recrystallized grains (FG) was investigated with the aim to understand the quantitative contribution of grain structure and dispersoids. With the decrease of quenching rate from about 244 °C/s to 1.3 °C/s, the hardness decrement after aging is about 45, 40, and 30 pct, respectively, for the CG, EG, and FG specimens; therefore, quench sensitivity is the highest for CG specimen, intermediate for EG specimen, and the lowest for FG specimen. There are major quenching-induced η (MgZn2) phase and minor T (Al2Zn3Mg3) phase in the slowly-quenched CG, EG, and FG specimens, and a plate-like Y phase occasionally appears in subgrains of the FG specimen. The quantitative contribution to quench sensitivity by grain boundaries, subgrain boundaries, and dispersoids in different specimens is discussed based on the amount of quenching-induced precipitates associated with them.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    X. Zhang, Y. Chen and J. Hu: Prog. Aerosp. Sci., 2018, vol. 97, pp. 22-34.

    Google Scholar 

  2. 2.

    T. Dursun and C. Soutis: Mater. Des., 2014, vol. 56, pp. 862-71.

    CAS  Google Scholar 

  3. 3.

    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller: Mater. Sci. Eng. A, 2000, vol. 80, pp. 102-07.

    Google Scholar 

  4. 4.

    P. A. Rometsch, Y. Zhang and S. Knight: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2003-17.

    CAS  Google Scholar 

  5. 5.

    M.F. Ibrahim, A.M. Samuel, and F.H. Samuel: Mater. Des., 2014, vol. 57, pp. 342-50.

    CAS  Google Scholar 

  6. 6.

    M.J. Starink, B. Milkereit, Y. Zhang, and P.A. Rometsch: Mater. Des., 2015, vol. 88, pp. 958-71.

    CAS  Google Scholar 

  7. 7.

    S.D. Liu, B. Chen, C.B. Li, Y. Dai, Y.L. Deng and X.M. Zhang: Corros. Sci., 2015, vol. 91, pp. 203-12.

    CAS  Google Scholar 

  8. 8.

    B.H. Nie, P.Y. Liu, and T.T. Zhou: Mater. Sci. Eng. A, 2016, vol. 667, pp. 106-14.

    CAS  Google Scholar 

  9. 9.

    A. Deschamps, G. Texier, S. Ringeval, and L. Delfaut-Durut: Mater. Sci. Eng. A, 2009, vol. 501, pp. 133-39.

    Google Scholar 

  10. 10.

    M. Tiryakioğlu, J.S. Robinson, and P.D. Eason: Mater. Sci. Eng. A, 2014, vol. 618, pp. 22-28.

    Google Scholar 

  11. 11.

    C.E. Bates and G.E. Totten: Heat Treat. Met., 1988, vol. 4, pp. 89-97.

    Google Scholar 

  12. 12.

    G.P. Dolan, and J.S. Robinson: J. Mater. Process. Tech., 2004, vol. 153-154, pp. 346-51.

    Google Scholar 

  13. 13.

    J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska and R.C. Wimpory: Mater. Charact., 2012, vol. 65, pp. 73-85.

    CAS  Google Scholar 

  14. 14.

    S.T. Lim, S.J. Yun and S.W. Nam: Mater. Sci. Eng. A, 2004, vol. 371, pp. 82-90.

    Google Scholar 

  15. 15.

    J.S. Robinson, R.L. Cudd, D.A. Tanner and G.P. Dolan: J. Mater. Process. Tech., 2001, vol. 119, pp. 261-67.

    CAS  Google Scholar 

  16. 16.

    L.H. Lin, Z.Y. Liu, S. Bai, Y.R. Zhou, W.J. Liu and Q. Lv: Mater. Sci. Eng. A, 2017, vol. 682, pp. 640-47.

    CAS  Google Scholar 

  17. 17.

    J.S. Chen, X.W. Li, B.Q. Xiong, Y.A. Zhang, Z.H. Li, H.W. Yan, H.W Liu and S.H. Huang: Rare Met., 2017, pp. 1–7.

  18. 18.

    J.G. Tang, H. Chen, X.M. Zhang, S.D. Liu, W.J. Liu and H. Ouyang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1255-63.

    CAS  Google Scholar 

  19. 19.

    L.H. Lin, Z.Y. Liu, S. Bai, P.Y. Ying and X.H. Wang: Mater. Des., 2015, vol. 86, pp. 679-85.

    CAS  Google Scholar 

  20. 20.

    S.D. Liu, W.J. Liu, Y. Zhang, X.M. Zhang and Y.L. Deng: J. Alloys Comp., 2010, vol. 507, pp. 53-61.

    CAS  Google Scholar 

  21. 21.

    X.M. Zhang, W.J. Liu, S.D. Liu and M.Z. Zhou: Mater. Sci. Eng. A, 2011, vol. 528, pp. 795-02.

    Google Scholar 

  22. 22.

    C.B. Li, S.Q. Han, S.D. Liu, Y.L. Deng and X.M. Zhang: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 2276-82.

    CAS  Google Scholar 

  23. 23.

    Y. Deng, Z.M. Yin, K. Zhao, J.Q. Duan and Z.B. He: J. Alloys Comp., 2012, vol. 530, pp. 71-80.

    CAS  Google Scholar 

  24. 24.

    S.D. Liu, X.M. Zhang, M.A. Chen, J.H. You and X.Y. Zhang: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 787-92.

    CAS  Google Scholar 

  25. 25.

    H.C. Fang, H. Chao and K.H. Chen: Mater. Sci. Eng. A, 2014, vol. 610, pp. 10-16.

    CAS  Google Scholar 

  26. 26.

    H.Y. Li, J.J. Liu, W.C. Yu, H. Zhao and D.W. Li: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 1191-200.

    CAS  Google Scholar 

  27. 27.

    Y. Zhang, C. Bettles, P.A. Rometsch: J. Mater. Sci., 2014, vol. 49, pp. 1709-15.

    CAS  Google Scholar 

  28. 28.

    C.B. Li, S.L. Wang, D.Z. Zhang, S.D. Liu, Z.J. Shan and X.M. Zhang: J. Alloys Comp., 2016, vol. 688, pp. 456-62.

    CAS  Google Scholar 

  29. 29.

    R.C. Dorward and D.J. Beernsten: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2481-84.

    CAS  Google Scholar 

  30. 30.

    S.D. Liu, Q.M. Zhong, Y. Zhang, W.J. Liu, X.M. Zhang and Y.L. Deng: Mater. Des., 2010, vol. 31, pp. 3116-20.

    CAS  Google Scholar 

  31. 31.

    S.D. Liu, C.B. Li, S.Q. Han, Y.L. Deng and X.M. Zhang: J. Alloys Compd., 2015, vol. 625, pp. 34-43.

    CAS  Google Scholar 

  32. 32.

    B. Morere, J.C. Ehrström, P.J. Gregson and I. Sinclair: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2503-15.

    CAS  Google Scholar 

  33. 33.

    H.C. Fang, H. Chao, K.H. Chen: J. Alloys Compd., 2015, vol. 622, pp. 166-73.

    CAS  Google Scholar 

  34. 34.

    A. Day, P. Trimby, K. Mehnert and B. Neumann: Channel 5: User Manual, Oxford Instruments, 2007.

  35. 35.

    X.M. Li and M.J. Starink: J. Alloys Compd., 2011, vol. 509, pp. 471-76.

    CAS  Google Scholar 

  36. 36.

    Y. Deng, Z.M. Yin and F.G. Cong: Intermetallics, 2012, vol. 26, pp. 114-21.

    CAS  Google Scholar 

  37. 37.

    K. Wen, B.Q. Xiong, Y.A. Zhang, G.J. Wang, X.W. Li, Z.H. Li, S.H. Huang and H.W. Liu: Rare Metal Mater. Eng., 2017, vol. 46, pp. 928-34.

    Google Scholar 

  38. 38.

    C. Mondal and A.K. Mukhopadhyay: Mater. Sci. Eng. A, 2005, vol. 391, pp. 367-76.

    Google Scholar 

  39. 39.

    K. Wen, Y.Q. Fan, G.J. Wang, L.B. Jin, X.W. Li, Z.H. Li, Y.A. Zhang and B.Q. Xiong: Mater. Des., 2016, vol. 101, pp. 16-23.

    CAS  Google Scholar 

  40. 40.

    J.K. Park and A.J. Ardell: Metall. Trans. A, 1983, vol. 14A, pp. 1957-65.

    CAS  Google Scholar 

  41. 41.

    A. Deschamps and Y. Brechet: Scripta Mater., 1998, vol. 39, pp. 1517-22.

    CAS  Google Scholar 

  42. 42.

    S.D. Liu, C.B. Li, Y.L. Deng, X.M. Zhang and Q.M. Zhong: Met. Mater. Int., 2014, vol. 20, pp. 195-200.

    CAS  Google Scholar 

  43. 43.

    N. Birbilis and R.G. Buchheit: J. Electrochem. Soc., 2005, vol. 152, pp. B140-51.

    CAS  Google Scholar 

  44. 44.

    G. Bergman, J.L.T. Waugh, and L. Pauling: Acta Cryst., 1957, vol. 10, pp. 254-59.

    CAS  Google Scholar 

  45. 45.

    H. Löffler, I. Kovács, and J. Lendvai: J. Mater. Sci., 1983, vol. 18, pp. 2215-40.

    Google Scholar 

  46. 46.

    S.D. Liu, Y. Zhang, W.J. Liu, Y.L. Deng and X.M. Zhang: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1-6.

    Google Scholar 

  47. 47.

    J.D. Robson: Mater. Sci. Eng. A, 2004, vol. 382, pp. 112-21.

    Google Scholar 

  48. 48.

    H. Zhao, F. De Geuser, A. K. Da Silva, A. Szczepaniak, B. Gault, D. Ponge, and D. Raabe: Acta Mater., 156:318-29, 2018

    CAS  Google Scholar 

  49. 49.

    Y. Zhang, M. Weyland, B. Milkereit, M. Reich and P.A. Rometsch: Sci. Rep., 2016, vol. 6, pp. 23109.

    CAS  Google Scholar 

  50. 50.

    Y. Zhang, B. Milkereit, O. Kessler, C. Schick and P.A. Rometsch: J. Alloys Compd., 2014, vol. 584, pp. 581-89.

    CAS  Google Scholar 

  51. 51.

    S.D. Liu, Q. Li, H.Q. Lin, L. Sun, T. Long, L.Y. Ye and Y.L. Deng: Mater. Des., 2017, vol. 132, pp. 119-28.

    CAS  Google Scholar 

  52. 52.

    J. Buha, R.N. Lumley, A.G. Crosky: Mater. Sci. Eng. A, 2008, vol. 492, pp. 1-10.

    Google Scholar 

  53. 53.

    X.S. Xu, J.X. Zheng, Z. Li, R.C. Luo, B. Chen: Mater. Sci. Eng. A, 2017, vol. 691, pp. 60-70.

    CAS  Google Scholar 

  54. 54.

    W.S. Rasband: ImageJ, U.S. National Institutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/, 1997–2009.

  55. 55.

    J.D. Robson and P.B. Prangnell: Mater. Sci. Technol., 2002, vol. 18, pp. 607-14

    CAS  Google Scholar 

Download references


This work is supported by the National Key Research and Development Program of China (2016YFB0300901), and the Shenghua Yuying Project of Central South University (20130603). The authors would like to thank Dr. Saiyi Li who helped in improving the manuscript.

Author information



Corresponding author

Correspondence to Shengdan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 18, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Yang, Z., Liu, S. et al. Quench Sensitivity of AA 7136 Alloy: Contribution of Grain Structure and Dispersoids. Metall Mater Trans A 50, 4900–4912 (2019). https://doi.org/10.1007/s11661-019-05397-5

Download citation