Correlation Between Plasticity and Atomic Structure Evolution of a Rejuvenated Bulk Metallic Glass


This article aims to establish a relation between the excitation of atomic structure, namely rejuvenation, and plasticity behavior of a Zr-based bulk metallic glass (BMG). The synchrotron X-ray diffraction (XRD) results showed that the cryothermal treatment leads to rejuvenation of the material, which is manifested by the structural disordering and the rearrangement of atomic clusters. It was also revealed that the rejuvenated structure provides more potential sites for shear-banding events during compressive loading. Hence, the homogeneous plasticity improves in the rejuvenated samples, which is recognized by a self-organized critical state of serrations in the stress–strain curves and high population of shear bands on the lateral surface of samples. On the other hand, a high energy barrier for shear transitions in as-cast specimens led to a semi-brittle failure with low plastic deformation. In general, with the increase in the number of cryothermal cycles, the rejuvenation as well as the non-localized deformation enhances in the BMG.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    E. Ma and J. Ding: Materials Today, 2016, vol. 19, pp. 568-579.

    CAS  Article  Google Scholar 

  2. 2.

    Y. Sun, A. Concustell and L. Greer: Nature Reviews Materials, 2016, 1, 16039.

    CAS  Article  Google Scholar 

  3. 3.

    T. P. Ge, C. Wang, J. Tan, T. Ma, X. H. Yu, C. Q. Jin, W. H. Wang and H. Y. Bai: Journal of Applied Physics, 2017, 121, 205109.

    Article  Google Scholar 

  4. 4.

    M. Liang, Y. Zhu, Z. Ji, J. Fu and C. Zheng: Journal of Materials Processing Technology, 2018, vol.251, pp. 47-53.

    CAS  Article  Google Scholar 

  5. 5.

    Y. Wu, D. Ma, Q.K. Li, A.D. Stoica, W.L. Song, H. Wang, X.J. Liu, G.M. Stoica, G.Y. Wang, K. An, X.L. Wang, M. Li and Z.P. Lu: Acta Materialia, 2017, 124, 478-488

    CAS  Article  Google Scholar 

  6. 6.

    D. Houdoux, T. Nguyen, A. Amon and J. Crassous: Phys. Rev. E, 2018, 98, 22905.

    CAS  Article  Google Scholar 

  7. 7.

    W. Guo, R. Yamada, J. Saida, S. Lü and S. Wu: Journal of Non-Crystalline Solids, 2018, vol. 498, pp. 8-13.

    CAS  Article  Google Scholar 

  8. 8.

    J. Pan, Y. Wang, Q. Guo, D. Zhang, A.L. Greer and Y. Li: Nat. Commun., 2018, 9, 560.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Tong, W. Dmowski, H. Bei, Y. Yokoyama and T. Egami: Acta Materialia, 2018, vol. 148, pp. 384-390.

    CAS  Article  Google Scholar 

  10. 10.

    S. Ketov, Y. Sun, S. Nachum, Z. Lu, A. Checchi, A. Beraldin, H. Bai, W. H. Wang, D. Louzguine-Luzgin, M. A. Carpenter and A. L. Greer: Nature, 2015, vol. 524, pp. 200-203.

    CAS  Article  Google Scholar 

  11. 11.

    T. Hufnagel: Nature Materials, 2015, vol. 14, pp. 867-868.

    CAS  Article  Google Scholar 

  12. 12.

    B. Shang, P. Guan and J. L. Barrat: J. Phys., 2018, 1, 1.

    Google Scholar 

  13. 13.

    N. V. Priezjev: Journal of Non-Crystalline Solids, 2019, vol. 503, pp. 131-138.

    Article  Google Scholar 

  14. 14.

    N. V. Priezjev, (2018).

  15. 15.

    W. Guo, R. Yamada and J. Saida: Intermetallics, 2018, vol. 93, pp. 141-147.

    CAS  Article  Google Scholar 

  16. 16.

    W. Guo, J. Saida, M. Zhao, S. Lü and S. Wu: Metallurgical and Materials Transactions A, 2019, vol. 50, pp. 1125-1129.

    Article  Google Scholar 

  17. 17.

    W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang and Z. Lu: Science Bulletin, 2018, vol. 63, pp. 840-844.

    CAS  Article  Google Scholar 

  18. 18.

    S. Ketov, A. Trifonov, Y. Ivanov, A. Churyumov, A. Lubenchenko, A. Batrakov, J. Jiang, D. Louzguine-Luzgin, J. Eckert, J. Orava and A. Greer: NPG Asia Materials, 2018, vol.10, pp. 137-145.

    CAS  Article  Google Scholar 

  19. 19.

    T.J. Lei, L. DaCosta, M. Liu, W.H. Wang, Y.H. Sun, A.L. Greer and M. Atzmon: Acta Mater., 2019, 164, 165-170.

    CAS  Article  Google Scholar 

  20. 20.

    W. Guo, J. Saida, M. Zhao, S. Lü, S. Wu: Materials Science & Engineering A, 2019, vol. 759, pp. 59-64.

    Article  Google Scholar 

  21. 21.

    W. Guo, Y Shao, J. Saida, M. Zhao, S. Lü, S. Wu: Journal of Alloys and Compounds, 2019, vol. 795, pp. 314-318.

    CAS  Article  Google Scholar 

  22. 22.

    M. Samavatian, R. Gholamipour, A. Amadeh and S. Mirdamadi: Journal of Non-crystalline Solids, 2019, vol. 506, pp. 39-45.

    CAS  Article  Google Scholar 

  23. 23.

    A. Cuesta, R. U. Ichikawa, D. Londono-Zuluaga, A. G. De la Torre, I. Santacruz, X. Turrillas and M. A.G. Aranda: Cement and Concrete Research, 2017, vol. 96, pp. 1-12.

    CAS  Article  Google Scholar 

  24. 24.

    F. Fauth, I. Peral, C. Popescu and M. Knapp: Powder Diffraction, 2013, vol. 28, pp. 5360-5370.

    Article  Google Scholar 

  25. 25.

    P. Juhás, T. Davis, C. Farrow and S. Billinge: Journal of Applied Crystallography, 2013, vol. 46, pp. 560-566.

    Article  Google Scholar 

  26. 26.

    M. Stoica,, J. Das, J. Bednarcik, H. Franz, N. Mattern, W. H. Wang and J. Eckert: J. Appl. Phys. 2008, 104, 13522.

    Article  Google Scholar 

  27. 27.

    M. Samavatian, R. Gholamipour, V. Samavatian, F, Farahani: Mater. Res. Express, 2019, 6, 65202.

    CAS  Article  Google Scholar 

  28. 28.

    J. Zhao, A. Inoue, C.T. Liu, P.K. Liaw, X. Shen, S. Pan, G. Chen and C. Fan: Scripta Materialia, 2016, vol. 117, pp. 64-67.

    CAS  Article  Google Scholar 

  29. 29.

    A. L. Greer and Y. H. Sun: Philosophical Magazine, 2016, vol. 96, pp. 1643-1663.

    CAS  Article  Google Scholar 

  30. 30.

    X.F. Zhang, S.P. Pan, J.W. Qiao and A.D. Lan: Computational Materials Science, 2017, vol. 128, pp. 343-347.

    CAS  Article  Google Scholar 

  31. 31.

    S. Lee, C. Lee, J. Lee, H. Kim, Y. Shibutani, E. Fleury and M. Falk: Appl. Phys. Lett., 2008, 92, 151906.

    Article  Google Scholar 

  32. 32.

    J.C. Qiao, Y. Yao, J.M. Pelletier and L.M. Keer: International Journal of Plasticity, 2016, vol. 82, pp. 62-75.

    CAS  Article  Google Scholar 

  33. 33.

    X. Tong, G. Wang, J. Yi, J.L. Ren, S. Pauly, Y.L. Gao, Q.J. Zhai, N. Mattern, K.A. Dahmen, P.K. Liaw and J. Eckert: International Journal of Plasticity, 2016, vol. 77, pp. 141-155.

    CAS  Article  Google Scholar 

  34. 34.

    B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao and W. H. Wang: Phys. Rev. Lett., 2010, 105, 35501.

    CAS  Article  Google Scholar 

  35. 35.

    M. Samavatian, R. Gholamipour, A. Amadeh and S. Mirdamadi: Materials Science and Engineering: A, 2019, vol. 753, pp. 218-223.

    Article  Google Scholar 

  36. 36.

    Z. Q. Zhang, K. K. Song, B. A. Sun, L. Wang, W. C. Cui, Y. S. Qin, X. L. Han, Q. S. Xue, C. X. Peng, B. Sarac, F. Spieckermann, I. Kaban and J. Eckert: Philosophical Magazine, 2018, vol. 98, pp. 1744-1764.

    CAS  Article  Google Scholar 

  37. 37.

    B. Shi, S. Luan and P. Jin: Journal of Non-Crystalline Solids, 2018, vol. 482, pp. 126-131.

    CAS  Article  Google Scholar 

  38. 38.

    Y. Zhao, A. Inoue, C. Chang, J. Liu, B. Shen, X. Wang and R. Li: Sci. Rep., 2014, 4, 5733.

    CAS  Article  Google Scholar 

Download references


The synchrotron X-ray experiments were performed at BL04 beamline at the ALBA Synchrotron with the collaboration of the ALBA staff.

Author information



Corresponding authors

Correspondence to Majid Samavatian or Reza Gholamipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 27, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samavatian, M., Gholamipour, R., Amadeh, A.A. et al. Correlation Between Plasticity and Atomic Structure Evolution of a Rejuvenated Bulk Metallic Glass. Metall Mater Trans A 50, 4743–4749 (2019).

Download citation