Preparation of Ultrafine W-10 Wt Pct Cu Composite Powders and Their Corresponding Sintered Compacts

Abstract

We propose a process to produce ultrafine W-10 wt pct Cu composite powders by reducing the mixtures of copper tungstate (CuWO4) and tungsten trioxide (WO3) (from the calcination of a mixture of ammonium paratungstate and copper nitrate trihydrate) with carbon black and hydrogen. First, ultrafine pre-reduced tungsten-copper (W-Cu) powders containing a small amount of WO2 were produced by reducing mixtures of CuWO4 and WO3 with insufficient carbon black; then the obtained products were further reduced by hydrogen to remove the residual oxygen. This method provides a simple and low-cost route to prepare ultrafine W-10 wt pct Cu composite powders. The composite powders were sintered at different temperatures [1323 K (1050 °C), 1373 K (1100 °C), 1423 K (1150 °C), 1473 K (1200 °C), and 1523 K (1250 °C)] for 3 hours. A maximum densification of the obtained compact was achieved at a sintering temperature of 1523 K (1250 °C), with a relative density, Vickers hardness and thermal conductivity of the W-10 wt pct Cu composites of 97.8 pct, 365 HV and 165 W/m K, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    [1] S.H. Lee, S.Y. Kwon, and H.J. Ham, Thermochim. Acta, 2012, vol. 542, pp. 2-5.

    CAS  Google Scholar 

  2. 2.

    [2] M. Ardestani, H. Arabi, H.R. Rezaie, and H. Razavizadeh, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 796-800.

    CAS  Google Scholar 

  3. 3.

    [3] P. Chen, G. Luo, Q. Shen, M. Li, and L. Zhang, Mater. Design, 2013, vol. 46, pp. 101-05.

    CAS  Google Scholar 

  4. 4.

    [4] Y.D. Kim, N.L. Oh, ST Oh, and I.H. Moon, Mater. Lett., 2001, vol. 51, pp. 420-24.

    CAS  Google Scholar 

  5. 5.

    [5] J. Korab, P.Štefánik, Š. Kavecký, P. Šebo, and G. Korb, Compos. Part A-Appl. S., 2002, vol. 33, pp. 577-81.

    Google Scholar 

  6. 6.

    [6] M. Ahangarkani, K.Z. Madar, S. Borji, and Z. Valefi, Int. J. Refract. Met. Hard Mater., 2017, vol. 67, pp. 115-24.

    CAS  Google Scholar 

  7. 7.

    [7] W. Chen, L. Dong, H. Zhang, J. Song, N. Deng, and J. Wang, Mater. Lett., 2017, vol. 205, pp. 198-201.

    CAS  Google Scholar 

  8. 8.

    [8] E. Tejado, A.V. Müller, J.H. You, and J.Y. Pastor, J. Nucl. Mater., 2018, vol. 498, pp. 468-75.

    CAS  Google Scholar 

  9. 9.

    [9] L.J. Kecskes, B.R. Klotz, K.C. Cho, R.J. Dowding, and M.D. Trexler, Metall. Mater. Trans. A, 2001, vol. 32, pp. 2885-93.

    CAS  Google Scholar 

  10. 10.

    Ho PW, Li QF, Fuh JYH (2008) Mater Sci Eng A 485:657-63

    Google Scholar 

  11. 11.

    [11] A.G. Hamidi, H. Arabi, and S. Rastegari, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 538-41.

    CAS  Google Scholar 

  12. 12.

    [12] J.L. Johnson, Int. J. Refract. Met. Hard Mater., 2015, vol. 53, pp. 80-86.

    CAS  Google Scholar 

  13. 13.

    [13] Y. Li, J. Zhang, G. Luo, Q. Shen, and L. Zhang, Int. J. Refract. Met. Hard Mater., 2018, vol. 71, pp. 255-61.

    CAS  Google Scholar 

  14. 14.

    [14] S.H. Hong, and B.K. Kim, Mater. Lett., 2003, vol. 57, pp. 2761-67.

    CAS  Google Scholar 

  15. 15.

    [15] Y. Guo, H. Guo, B. Gao, X. Wang, Y. Hu, and Z. Shi, J. Alloy Compd., 2017, vol. 724, pp. 155-62.

    CAS  Google Scholar 

  16. 16.

    [16] X. Shi, H. Yang, S. Wang, G. Shao, X. Duan, Z. Xiong, and T. Wang, Mater. Chem. Phys., 2007, vol. 104, pp. 235-39.

    CAS  Google Scholar 

  17. 17.

    [17] G.G. Lee, G.H. Ha, and B.K. Kim, Powder Metall., 2000, vol. 43, pp. 79-82.

    CAS  Google Scholar 

  18. 18.

    [18] D.G. Kim, K.W. Lee, S.T. Oh, and Y.D. Kim, Mater. Lett., 2004, vol. 58, pp. 1199-203.

    CAS  Google Scholar 

  19. 19.

    [19] G. Pintsuk, I. Smid, J.E. Döring, W. Hohenauer, and J. Linke, J. Mater. Sci., 2007, vol. 42, pp. 30-39.

    CAS  Google Scholar 

  20. 20.

    [20] J. Cheng, C. Lei, E. Xiong, Y. Jiang, and Y. Xia, J. Alloy Compd., 2006, vol. 421, pp. 146-50.

    CAS  Google Scholar 

  21. 21.

    [21] T.H. Kim, J.H. Yu, and J.S. Lee, NanoStruct. Mater., 1997, vol. 9, pp. 213-16.

    CAS  Google Scholar 

  22. 22.

    [22] A.K. Basu, and F.R. Sale, J. Mater. Sci., 1978, vol. 13, pp. 2703-11.

    CAS  Google Scholar 

  23. 23.

    [23] M.H. Maneshian, and A. Simchi, J. Alloy Compd., 2008, vol. 463, pp. 153-59.

    CAS  Google Scholar 

  24. 24.

    [24] W.T. Qiu, Y. Pang, Z. Xiao, and Z. Li, Int. J. Refract. Met. Hard Mater., 2016, vol. 61, pp. 91-97.

    CAS  Google Scholar 

  25. 25.

    [25] S.S. Ryu, Y.D. Kim, and I.H. Moon, J. Alloy Compd., 2002, vol. 335, pp. 233-40.

    CAS  Google Scholar 

  26. 26.

    [26] M.H. Maneshian, A. Simchi, and Z.R. Hesabi, Mat. Sci. Eng. A, 2007, vol. 445-446, pp. 86-93.

    Google Scholar 

  27. 27.

    [27] S.N. Alam, Mat. Sci. Eng. A, 2006, vol. 433, pp. 161-68.

    Google Scholar 

  28. 28.

    [28] A. Dolatmoradi, S. Raygan, and H. Abdizadeh, Powder Technol., 2013, vol. 233, pp. 208-14.

    CAS  Google Scholar 

  29. 29.

    [29] S.S. Ryu, H.R. Park, Y.D. Kim, and H.S. Hong, Int. J. Refract. Met. Hard Mater., 2017. vol. 65, pp. 39-44.

    CAS  Google Scholar 

  30. 30.

    [30] C. Li, Y. Zhou, Y. Xie, D. Zhou, and D. Zhang, J. Alloy Compd., 2018, vol. 731, pp. 537-45.

    CAS  Google Scholar 

  31. 31.

    [31] M. Hashempour, H. Razavizadeh, H.R. Rezaie, and M.T. Salehi, Mater. Charact., 2009, vol. 60, pp. 1232-40.

    CAS  Google Scholar 

  32. 32.

    [32] B. Sun, J. Song, Y. Yu, Z. Zhuang, M. Niu, Y. Liu, T. Zhang, and Y. Qi, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 76-79.

    CAS  Google Scholar 

  33. 33.

    [33] A.C. Franciné, A.G.P.D. Silva, and U.U. Gomes, Powder Technol., 2003, vol. 134, pp. 123-32.

    Google Scholar 

  34. 34.

    [34] E. Ahmadi, M. Malekzadeh, and S.K. Sadrnezhaad, Int. J. Refract. Met. Hard Mater., 2009, vol. 28, pp. 441-45.

    Google Scholar 

  35. 35.

    [35] G.D. Sun, K.F. Wang, C.M. Song, and G.H. Zhang, Int. J. Refract. Met. Hard Mater., 2019, vol. 78, pp. 100-06.

    CAS  Google Scholar 

  36. 36.

    [36] C. Liang, F. Tian, Z. Wei, Q. Xin, and C. Li, Nanotechnology, 2003, vol. 14, pp. 196-205.

    Google Scholar 

  37. 37.

    [37] X.P. Ji, W.C. Cao, C.Y. Bu, K. He, Y.D. Wu, and G.H. Zhang, Int. J. Refract. Met. Hard Mater., 2019, vol. 81, pp. 955-58.

    Google Scholar 

  38. 38.

    [38] D.S. Venables, and M.E. Brown, Thermochim. Acta, 1996, vol. 282-283, pp. 265-76.

    Google Scholar 

  39. 39.

    [39] T. Zimmerl, W.D. Schubert, A. Bicherl, and A. Bock, Int. J. Refract. Met. Hard Mater., 2017, vol. 62, pp. 87-96.

    CAS  Google Scholar 

  40. 40.

    [40] V.L. Boris, Thermochim. Acta, 2000, vol. 360, pp. 109-20.

    Google Scholar 

  41. 41.

    [41] Y. Shen, J. Mater. Chem. A, 2015, vol. 3, pp. 13114-88.

    CAS  Google Scholar 

  42. 42.

    [42] D.G. Kim, B.H. Lee, S.T. Oh, Y.D. Kim, and S.G. Kang, Mat. Sci. Eng. A, 2005, vol. 395, pp. 333-37.

    Google Scholar 

  43. 43.

    [43] J. Cheng, P. Song, Y. Gong, Y. Cai, and Y. Xia, Mat. Sci. Eng. A, 2008, vol. 488, pp. 453-57.

    Google Scholar 

  44. 44.

    [44] J. Fan, T. Liu, S. Zhu, and Y. Han, Int. J. Refract. Met. Hard Mater., 2012, vol. 30, pp. 33-37.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 16, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, JK., Zhang, GH. & Sun, GD. Preparation of Ultrafine W-10 Wt Pct Cu Composite Powders and Their Corresponding Sintered Compacts. Metall Mater Trans A 50, 4827–4838 (2019). https://doi.org/10.1007/s11661-019-05390-y

Download citation