Correlating Hot Deformation Parameters with Microstructure Evolution During Thermomechanical Processing of Inconel 718 Alloy

Abstract

Hot compression tests were conducted to determine the processing window for deformation of solutionized Inconel 718 over a range of high temperature and strain rate. Hot working map based on the dynamic material model was developed to establish the hot-processing regime. Maximum hot deformation efficiency within the processing regime is marked by the dynamic recrystallization, whereas an instability regime exhibits the highly deformed grains with shear bands. Further, selected deformed specimens were aged at 750 °C for 8 hours. Using electron back scattered diffraction and microhardness analyses, different microstructural properties such as grain size, twin fraction, grain average misorientation, and hardness were correlated. For deformed specimens, it was found that hardness is a function of misorientation and grain size. However, after aging treatment, hardness for all the specimens was found to lie in the range of 400 to 425 HV. Further, through transmission electron microscopy analysis, it was confirmed that deformed specimens are devoid of any precipitates while the deformed specimens followed by aging showed γ″ precipitates. Thus, the lack of correlation between the hardness and the grain size in the aged specimen was due to evolution of precipitates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    E.A. Loria: JOM, 1992, vol. 44, pp. 33–36.

    CAS  Google Scholar 

  2. 2.

    T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.

    CAS  Google Scholar 

  3. 3.

    R.C. Reed: The Superalloys Fundamentals and Applications, 1 Edn., Cambridge University Press, New York, 2006.

    Google Scholar 

  4. 4.

    M.C. Chaturvedi and Y. Han: Met. Sci., 1983, vol. 17, pp. 145–49.

    Google Scholar 

  5. 5.

    R. Cozar and A. Pineau: Metall. Trans., 1973, vol. 4, pp. 47–59.

    CAS  Google Scholar 

  6. 6.

    S. Azadian, L.-Y. Wei, and R. Warren: Mater. Charact., 2004, vol. 53, pp. 7–16.

    CAS  Google Scholar 

  7. 7.

    H. Yuan and W.C. Liu: Mater. Sci. Eng. A, 2005, vol. 408, pp. 281–89.

    Google Scholar 

  8. 8.

    A. Agnoli, M. Bernacki, R. Logé, J.-M. Franchet, J. Laigo, and N. Bozzolo: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4405–21.

    Google Scholar 

  9. 9.

    M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, and J. Calvo: Mater. Sci. Eng. A, 2016, vol. 678, pp. 137–52.

    CAS  Google Scholar 

  10. 10.

    M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Acta Metall., 1988, vol. 36, pp. 847–64.

    CAS  Google Scholar 

  11. 11.

    Y.V.R.K. Prasad and N. Ravichandran: Bull. Mater. Sci., 1991, vol. 14, pp. 1241–48.

    CAS  Google Scholar 

  12. 12.

    S. Guo, D. Li, H. Pen, Q. Guo, and J. Hu: J. Nucl. Mater., 2011, vol. 410, pp. 52–58.

    CAS  Google Scholar 

  13. 13.

    X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He: Mater. Des., 2014, vol. 57, pp. 568–77.

    CAS  Google Scholar 

  14. 14.

    Q.M. Guo, D.F. Li, and S.L. Guo: Mater. Manuf. Process., 2012, vol. 27, pp. 990–95.

    CAS  Google Scholar 

  15. 15.

    A. Nowotnik: Superalloys 2008 (Eleventh International Symposium), TMS, 2008, pp. 709–17.

    Google Scholar 

  16. 16.

    M.C. Somani, K. Muraleedharan, N.C. Birla, V. Singh, and Y.V.R.K. Prasad: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1693–702.

    CAS  Google Scholar 

  17. 17.

    P.J. Wray: J. Appl. Phys., 1969, vol. 40, pp. 4018–29.

    CAS  Google Scholar 

  18. 18.

    R. Raj: Metall. Trans. A, 1981, vol. 12, pp. 1089–97.

    Google Scholar 

  19. 19.

    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker: Metall. Trans. A, 1984, vol. 15, pp. 1883–92.

    CAS  Google Scholar 

  20. 20.

    S.V.S. NarayanaMurty, M.S. Sarma, and B.N. Rao: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1581–82.

    Google Scholar 

  21. 21.

    J.C. Malas and V. Seetharaman: JOM, 1992, vol. 44, pp. 8–13.

    Google Scholar 

  22. 22.

    S.L. Semiatin and G.D. Lahoti: Metall. Trans. A, 1981, vol. 12, pp. 1705–17.

    Google Scholar 

  23. 23.

    F. Montheillet, J.J. Jonas, and K.W. Neale: Metall. Mater. Trans. A, 1996, vol. 27, pp. 232–35.

    CAS  Google Scholar 

  24. 24.

    X. Ma, W. Zeng, K. Wang, Y. Lai, and Y. Zhou: Mater. Sci. Eng. A, 2012, vol. 550, pp. 131–37.

    CAS  Google Scholar 

  25. 25.

    Y.V.R.K. Prasad, K. P. Rao, and S.Sasidhar: Hot Working Guide: A Compendium of Processing Maps, 2nd ed., ASM International, 2015.

  26. 26.

    F. Sui, L. Xu, L. Chen, and X. Liu: J. Mater. Process. Technol., 2011, vol. 211, pp. 433–40.

    CAS  Google Scholar 

  27. 27.

    S. Medeiros, Y.V.R. Prasad, W. Frazier, and R. Srinivasan: Mater. Sci. Eng. A, 2000, vol. 293, pp. 198–207.

    Google Scholar 

  28. 28.

    N. Srinivasan and Y.V.R.K. Prasad: Metall. Mater. Trans. A, 1994, vol. 25, pp. 2275–84.

    CAS  Google Scholar 

  29. 29.

    D. Wen, Y.C. Lin, H.-B. Li, X. Chen, J. Deng, and L. Li: Mater. Sci. Eng. A, 2014, vol. 591, pp. 183–92.

    CAS  Google Scholar 

  30. 30.

    H. Zhang, K. Zhang, Z. Lu, C. Zhao, and X. Yang: Mater. Sci. Eng. A, 2014, vol. 604, pp. 1–8.

    CAS  Google Scholar 

  31. 31.

    Y.C. Lin, X.-M. Chen, D. Wen, and M. Chen: Comput. Mater. Sci., 2014, vol. 83, pp. 282–89.

    CAS  Google Scholar 

  32. 32.

    X.-M. Chen, Y.C. Lin, M. Chen, H. Li, D. Wen, J. Zhang, and M. He: Mater. Des., 2015, vol. 77, pp. 41–49.

    CAS  Google Scholar 

  33. 33.

    H.Y. Zhang, S.H. Zhang, M. Cheng, and Z.X. Li: Mater. Charact., 2010, vol. 61, pp. 49–53.

    CAS  Google Scholar 

  34. 34.

    A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado: J. Mater. Process. Technol., 2006, vol. 177, pp. 469–72.

    CAS  Google Scholar 

  35. 35.

    G.A. Rao, M. Kumar, M. Srinivas, and D.S. Sarma: Mater. Sci. Eng. A, 2003, vol. 355, pp. 114–25.

    Google Scholar 

  36. 36.

    A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A.K. Koul: Mater. Des., 2013, vol. 52, pp. 791–800.

    CAS  Google Scholar 

  37. 37.

    F. Theska, A. Stanojevic, B. Oberwinkler, S.P. Ringer, and S. Primig: Acta Mater., 2018, vol. 156, pp. 116–24.

    CAS  Google Scholar 

  38. 38.

    N. Bozzolo, N. Souaï, and R.E. Logé: Acta Mater., 2012, vol. 60, pp. 5056–66.

    CAS  Google Scholar 

  39. 39.

    T. Al-Samman and G. Gottstein: Mater. Sci. Eng. A, 2008, vol. 490, pp. 411–20.

    Google Scholar 

  40. 40.

    Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3218–27.

    Google Scholar 

  41. 41.

    H. Jiang, J. Dong, M. Zhang, L. Zheng, and Z. Yao: J. Alloys Compd., 2015, vol. 647, pp. 338–50.

    CAS  Google Scholar 

  42. 42.

    C.A. Dandre, S.M. Roberts, R.W. Evans, and R.C. Reed: Mater. Sci. Technol., 2000, vol. 16, pp. 14–25.

    CAS  Google Scholar 

  43. 43.

    S.I. Wright, M.M. Nowell, S.P. Lindeman, P.P. Camus, M. De Graef, and M.A. Jackson: Ultramicroscopy, 2015, vol. 159, pp. 81–94.

    CAS  Google Scholar 

  44. 44.

    M. Zouari, N. Bozzolo, and R.E. Loge: Mater. Sci. Eng. A, 2016, vol. 655, pp. 408–24.

    CAS  Google Scholar 

  45. 45.

    R. Gujrati, C. Gupta, J.S. Jha, S. Mishra, and A. Alankar: Mater. Sci. Eng. A, 2019, vol. 744, pp. 638–51.

    CAS  Google Scholar 

  46. 46.

    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.

    CAS  Google Scholar 

  47. 47.

    G. He, F. Liu, L. Huang, Z. Huang, and L. Jiang: J. Alloys Compd., 2017, vol. 701, pp. 909–19.

    CAS  Google Scholar 

  48. 48.

    J.J. Jonas, C.M. Sellars, and W.J.M. Tegart: Metall. Rev., 1969, vol. 14, pp. 1–24.

    Google Scholar 

  49. 49.

    S. Mishra, K. Narasimhan, and I. Samajdar: Mater. Sci. Technol., 2007, vol. 23, pp. 1118–26.

    CAS  Google Scholar 

  50. 50.

    S. Mandal, S.K. Mishra, A. Kumar, I. Samajdar, P.V. Sivaprasad, T. Jayakumar, and B. Raj: Philos. Mag., 2008, vol. 88, pp. 883–97.

    CAS  Google Scholar 

  51. 51.

    H. Ziegler: vol. 4, Wiley, New York, 1963, pp. 93–113.

  52. 52.

    Y.V.R.K. Prasad and T. Seshacharyulu: Mater. Sci. Eng. A, 1998, vol. 243, pp. 82–88.

    Google Scholar 

  53. 53.

    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Google Scholar 

  54. 54.

    J. Humphreys and G.S. Rohrer: Recrystallization and Related Annealing Phenomena, Third Edit., Elsevier, 2017.

    Google Scholar 

  55. 55.

    Y.C. Lin, M. Chen, and J. Zhong: Mech. Res. Commun., 2008, vol. 35, pp. 142–50.

    Google Scholar 

  56. 56.

    E.I. Poliak and J.J. Jonas: ISIJ Int., 2003, vol. 43, pp. 684–91.

    CAS  Google Scholar 

  57. 57.

    S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1062–72.

    Google Scholar 

  58. 58.

    F. Chen, J. Liu, H. Ou, B. Lu, Z. Cui, and H. Long: Mater. Sci. Eng. A, 2015, vol. 642, pp. 279–87.

    CAS  Google Scholar 

  59. 59.

    D.J. Abson and J.J. Jonas: Met. Sci. J., 1970, vol. 4, pp. 24–28.

    CAS  Google Scholar 

  60. 60.

    D. Wen, Y.C. Lin, J. Chen, X. Chen, J. Zhang, Y. Liang, and L. Li: J. Alloys Compd., 2015, vol. 618, pp. 372–79.

    CAS  Google Scholar 

  61. 61.

    M. Miller: Micron, 2001, vol. 32, pp. 757–64.

    CAS  Google Scholar 

  62. 62.

    J. Oblak, D.. Duvall, and D.. Paulonis: Mater. Sci. Eng., 1974, vol. 13, pp. 51–56.

    CAS  Google Scholar 

  63. 63.

    I.J. Moore, M.G. Burke, N.T. Nuhfer, and E.J. Palmiere: J. Mater. Sci., 2017, vol. 52, pp. 8665–80.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sushil Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 25, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, C., Jha, J.S., Jayabalan, B. et al. Correlating Hot Deformation Parameters with Microstructure Evolution During Thermomechanical Processing of Inconel 718 Alloy. Metall Mater Trans A 50, 4714–4731 (2019). https://doi.org/10.1007/s11661-019-05380-0

Download citation