Experimental and Theoretical Research on the Corrosion Resistance of Ferrous Alloys in Aluminum Melts

Abstract

The resistance of three ferrous alloys (HT150, QT500, and H13) to corrosion caused by exposure to aluminum melts has been systematically studied using experiments and modeling. Results show that the exfoliation and dissolution of intermetallic compounds like Fe2Al5 and FeAl3 formed by the interdiffusion between aluminum melts and ferrous alloys are responsible for the corrosive attack. Based on the thermodynamics and kinetics of intermetallic compounds, an analytical model has been established to quantitatively account for the corrosion behavior between the ferrous alloys and aluminum melts, and the diffusion inhibition factor λ is first introduced in this work to quantitatively estimate the extent to which the existence of carbon can influence the diffusion of aluminum melts to the ferrous alloys. Theoretical analysis demonstrates that the flake graphite in HT150 can reduce the corrosion rate most effectively, followed by spheroidal graphite in QT500. Both outperform H13.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    H. Yang, W.T. Tsai, J.C. Kuo and C. Yang: J. Alloys Compd., 2011, vol. 509, pp. 8176-82.

    CAS  Article  Google Scholar 

  2. 2.

    V. Nunes, F.J.G. Silva, M.F. Andrade, R. Alexandre and A.P.M. Baptista: Surf. Coat. Technol., 2017, vol. 332, pp. 319-31.

    CAS  Article  Google Scholar 

  3. 3.

    N.L. Okamoto, J. Okumura, M. Higashi and H. Inui: Acta Mater., 2017, vol. 129, pp. 290-99.

    CAS  Article  Google Scholar 

  4. 4.

    M. Yousaf, J. Iqbal and M. Ajmal: Mater. Charact., 2011, vol. 62, pp. 517-25.

    CAS  Article  Google Scholar 

  5. 5.

    X. Zhang, W. Chen, H. Luo, S. Li, T. Zhou and L. Shi: Corros. Sci., 2017, vol. 125, pp. 20-28.

    CAS  Article  Google Scholar 

  6. 6.

    D. Alonso-Peña, M.E. Arnáiz-García, J.L. Valero-Gasalla, A.M. Arnáiz-García, R. Campillo-Campaña, J. Alonso-Peña, J.M. González-Santos, A.L. Fernández-Díaz and J. Arnáiz: Burns, 2015, vol. 41, pp. 1122-25.

    Article  Google Scholar 

  7. 7.

    S. Komarov and D. Kuznetsov: Int. J. Refract. Met. Hard Mater., 2012, vol. 35, pp. 76-83.

    CAS  Article  Google Scholar 

  8. 8.

    N. Tunca, G.W. Delamore and R.W. Smith: Metall. Mater. Trans. A, 1990, vol. 21, pp. 2919-28.

    CAS  Article  Google Scholar 

  9. 9.

    N. Tang, Y.P. Li, S. Kurosu, H. Matsumoto and A. Chiba: Corros. Sci., 2012, vol. 60, pp. 32-37.

    CAS  Article  Google Scholar 

  10. 10.

    Y. Li, N. Tang, P. Tunthawiroon, Y. Koizumi and A. chiba: Corros. Sci., 2013, vol. 73, pp. 72-79.

  11. 11.

    H. Xiao, W. Chen and Z. Liu: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 2320-26.

    CAS  Article  Google Scholar 

  12. 12.

    M.B. Lin, C.J. Wang and A.A. Volinsky: Surf. Coat. Technol., 2011, vol. 206, pp. 1595-99.

    CAS  Article  Google Scholar 

  13. 13.

    D. Cong, H. Zhou, Z. Ren, H. Zhang, L. Ren, C. Meng and C. Wang: Opt. Laser. Eng., 2014, vol. 54, pp. 55-61.

    Article  Google Scholar 

  14. 14.

    M.S. Sidhu: PhD thesis, University of Canterbury, 2012.

  15. 15.

    D. Balloy, J.C. Tissier, M.L. Giorgi, M.L. Giorgi and M. Briant: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2366-76.

    Article  Google Scholar 

  16. 16.

    J. Rong, Z. Kang, S. Chen, D. Yang, J. Huang and J. Yang: Mater. Charact., 2017, vol. 132, pp. 413-21.

    CAS  Article  Google Scholar 

  17. 17.

    A.V. Alboom, B. Lemmens, B. Breitbach, E.D. Grave, S. Cottenier and K. Verbeken: Surf. Coat. Technol., 2017, vol. 324, pp. 419-28.

    Article  Google Scholar 

  18. 18.

    Z. Ding, Q. Hu, W. Lu, X. Ge, S. Gao, S. Sun, T. Yang, M. Xia and J. Li: Mater. Charact., 2018, vol. 136, pp. 157-64.

    CAS  Article  Google Scholar 

  19. 19.

    K. Bouche, F. Barbier and A. Coulet: Mater. Sci. Eng. A, 1998, vol. 249, pp. 167-75.

    Article  Google Scholar 

  20. 20.

    T. Heumann and S. Dittrich: Z. Metallkunde, 1959, vol. 50, pp. 617-25.

    CAS  Google Scholar 

  21. 21.

    S. Chen, D. Yang, M. Zhang, J. Huang and X. Zhao: Metall. Mater. Trans. A, 2016, vol. 47, pp. 5088-100.

    Article  Google Scholar 

  22. 22.

    M.S. Sidhu, C.M. Bishop and M.V. Kral: Int. J. Cast Met. Res., 2014, vol. 27, pp. 321-28.

    CAS  Article  Google Scholar 

  23. 23.

    H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla and G. Eggeler: Acta Mater., 2011, vol. 59, pp. 1586-600.

    CAS  Article  Google Scholar 

  24. 24.

    T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J.F. Löffler and P.J. Uggowitzer: Mater. Sci. Eng. A, 2007, vol. 448, pp. 1-6.

    Article  Google Scholar 

  25. 25.

    A. Ureña, J. Rams, M.D. Escalera and M. Sánchez: Compos. Sci. Technol., 2005, vol. 65, pp. 2025-38.

    Article  Google Scholar 

  26. 26.

    B. Liu, Hot dip aluminizing of steel, Metallurgical Industry Press, Beijing, 1995, pp. 21-23.

    Google Scholar 

  27. 27.

    G. Wang, A. Meng, and Z. Ren: Physical Chemistry, 3rd ed., Shanghai Scientific & Technical Publishers, Shanghai, 2007, pp. 293–302.

  28. 28.

    S. Mei, M. Gao, J. Yan, C. Zhang, G. Li and X. Zeng: Sci. Technol. Weld. Joining, 2013, vol. 18(4), pp. 293-300.

    CAS  Article  Google Scholar 

  29. 29.

    R.W. Richards, R.D. Jones, P.D. Clements and H. Clarke: Int. Mater. Rev, 1994, vol.39, pp. 191-212.

    CAS  Article  Google Scholar 

  30. 30.

    N. Tang, Y. Li, Y. Koizumi, S. Kurosu and A. Chiba: Corros. Sci., 2013, vol. 73, pp. 54-61.

    CAS  Article  Google Scholar 

  31. 31.

    L.L. Bircumshaw and A.C. Riddiford: Q. Rev. Chem. Soc., 1952, vol. 6, pp. 157-85.

    CAS  Article  Google Scholar 

  32. 32.

    V.N. Yeremenko, Y.V. Natanzon and V.I. Dybkov: J. Mater. Sci., 1981, vol. 16, pp. 1748-56.

    Article  Google Scholar 

  33. 33.

    J.R. Davis, Metals Handbook Desk Edition. ASM, USA, 1998.

    Google Scholar 

  34. 34.

    V.N. Eremenko, Y.V. Natanzon and V.I. Dybkov: J. Mater. Sci., 1985, vol. 20, pp. 501-07.

    Article  Google Scholar 

  35. 35.

    H. Rezaei, M.R. Akbarpour and H.R. Shahverdi: JOM, 2015, vol. 67, pp. 1443-50.

    CAS  Article  Google Scholar 

  36. 36.

    J. Mackowiak and L.L. Shreir (1959) J Less Common Met 1(6):456-466.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 22, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Wang, K., Dong, X. et al. Experimental and Theoretical Research on the Corrosion Resistance of Ferrous Alloys in Aluminum Melts. Metall Mater Trans A 50, 4665–4676 (2019). https://doi.org/10.1007/s11661-019-05379-7

Download citation