Subgrains, Texture Evolution, and Dynamic Abnormal Grain Growth in a Mo Rod Material

Abstract

The roles of subgrains, texture, and surface energy during dynamic abnormal grain growth (DAGG) were examined in a commercial-purity Mo rod material. DAGG was observed in this material during tensile deformation at 2023 K (1750 °C). Cooling of specimens after tensile testing was sufficiently rapid to preserve both subgrain structures developed during deformation and several abnormal grains at early stages of growth. These and other microstructural features were characterized to evaluate how subgrains and boundary character influence the early stages of DAGG. Subgrains were observed in the deformed polycrystalline material but were generally absent in newly formed abnormal grains. This was identified as the cause of the sudden drop in flow stress observed at the initiation of DAGG. It is proposed that subgrain intersections with abnormal grain boundaries provide a driving pressure for DAGG. Subgrains within the deformed polycrystals were observed to locally change the boundary curvature at their intersections with abnormal grain boundaries, which likely encouraged growth of the abnormal grains into the deformed polycrystals. Abnormal grains produced by DAGG retained crystallographic orientations and boundary characters that closely resembled those of the polycrystalline material from which they grew. This suggests that neither differences in orientation nor boundary character were important to DAGG in this material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    R. PremKumar, I. Samajdar, N. N. Viswanathan, V. Singal, and V. Sadr: Journal of Magnetism and Magnetic Materials, 2003, vol. 264, pp. 75–85.

    CAS  Article  Google Scholar 

  2. 2.

    B. L. Boyce and H. A. Padilla: Metallurgical and Materials Transactions A, 2011, vol. 42, pp. 1793–1804.

    Article  Google Scholar 

  3. 3.

    A. Rollett and W. Mullins: Scripta Materialia, 1997, vol. 36, pp. 975–980.

    CAS  Article  Google Scholar 

  4. 4.

    G. Gottstein, and L. S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications., CRC Press, Boca Raton, 2009.

    Book  Google Scholar 

  5. 5.

    N. Bozzolo, A Agnoli, N. Souai, M. Bernacki, and R. E. Log: Materials Science Forum, 2013, vol. 753, pp. 321–324.

    Article  Google Scholar 

  6. 6.

    V. M. Miller, A. E. Johnson, C. J. Torbet, T. M. Pollock: Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 1566–1574.

    Article  Google Scholar 

  7. 7.

    S. B. Lee, D. Y. Yoon, and M. F. Henry: Acta Materialia, 2000, vol. 48, pp. 3071–3080.

    CAS  Article  Google Scholar 

  8. 8.

    J. Ciulik and E. M. Taleff: Scripta Materialia, 2009, vol. 61, pp. 895–898.

    CAS  Article  Google Scholar 

  9. 9.

    D. L. Worthington, N. A. Pedrazas, P. J. Noell, and E. M. Taleff: Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 5025–5038.

    Article  Google Scholar 

  10. 10.

    P. J. Noell, D. L. Worthington, and E. M. Taleff: Metallurgical and Materials Transactions A, 2015, vol. 46, pp. 5708–5718.

    Article  Google Scholar 

  11. 11.

    P. J. Noell, D. L. Worthington, and E. M. Taleff: Materials Science and Engineering: A, 2017, vol. 692, pp. 24–34.

    CAS  Article  Google Scholar 

  12. 12.

    N. A. Pedrazas, T. E. Buchheit, E. A. Holm, and E. M. Taleff: Materials Science and Engineering: A, 2014, vol. 610, pp. 76–84.

    CAS  Article  Google Scholar 

  13. 13.

    P. J. Noell and E. M. Taleff: JOM, 2015, vol. 67, pp. 2642–2645.

    CAS  Article  Google Scholar 

  14. 14.

    P. J. Noell and E. M. Taleff: Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 5023–5036.

    Article  Google Scholar 

  15. 15.

    M. E. Kassner and M.-T. Pérez-Prado: Progress in Materials Science, 2000, vol. 45, pp. 1–102.

    CAS  Article  Google Scholar 

  16. 16.

    J. Ciulik, E. M. Taleff: Materials Science and Engineering: A, 2007, vol. 463, pp. 197–202.

    Article  Google Scholar 

  17. 17.

    C. V. Thompson: Annual Review of Materials Science, 1990, vol. 20, pp. 245–268.

    CAS  Article  Google Scholar 

  18. 18.

    R. Barto and L. Ebert: Metallurgical Transactions, 1971, vol. 2, pp. 1643–1649.

    CAS  Google Scholar 

  19. 19.

    HKL Channel 5: Oxford Instruments PLC, Oxon, United Kingdom. https://nano.oxinst.com/

  20. 20.

    Wolfram Research: Mathematica 8.0, 2010. https://www.wolfram.com/

  21. 21.

    D. Brandon: Acta Metallurgica, 1966, vol. 14, pp. 1479–1484.

    CAS  Article  Google Scholar 

  22. 22.

    S. I. Wright, M. M. Nowell, and D. P. Field: Microscopy and Microanalysis, 2011, vol. 17, pp. 316–329.

    CAS  Article  Google Scholar 

  23. 23.

    ASTM International: Standard Designation E 112-13, ASTM International, PA, 2013.

    Google Scholar 

  24. 24.

    R. A. Lebensohn and C. N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–2624.

    CAS  Article  Google Scholar 

  25. 25.

    C.N. Tomé and R.A. Lebensohn: Manual for Code: Viso-plastic Self-consistent (VPSC), Version 7c, 2009, Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  26. 26.

    W.F. Gale and T.C. Totemeier, eds.: Smithells Metals Reference Book, 8th ed. Elsevier Inc./ASM International, Materials Park, 2004, p. 15-5

    Chapter  Google Scholar 

  27. 27.

    O. D. Sherby, P. M. Burke: Progress in Materials Science, 1968, vol. 13, pp. 325–390.

    Article  Google Scholar 

  28. 28.

    O. D. Sherby, R. H. Klundt and A. K. Miller: Metallurgical Transactions A, 1977, vol. 8A, pp. 843–850.

    CAS  Article  Google Scholar 

  29. 29.

    J. Mackenzie: Acta Metallurgica, 1964, vol 12, pp. 223–225.

    CAS  Article  Google Scholar 

  30. 30.

    L.Bendersky, A. Rosen, and A. K. Mukherjee: International Metals Reviews, 1985, vol. 30, pp. 1–16.

    CAS  Article  Google Scholar 

  31. 31.

    J. Pešička, R. Kužel, A. Dronhofer, and G. Eggeler: Acta Materialia, 2003, vol. 51, pp. 48470-4862.

    Article  Google Scholar 

  32. 32.

    S. Karashima, T. Iikubo, and H. Oikawa: Transactions JIM, 1972, vol. 13, pp. 176–181.

    CAS  Article  Google Scholar 

  33. 33.

    C. Barrett, W. D. Nix, and O. D. Sherby: ASM Transactions, 1996, vol. 59, pp. 3–15.

    Google Scholar 

  34. 34.

    H. J. Frost and M. F. Ashby: Deformation-Mechanism Maps. The Plasticity and Creep of Metals and Ceramics, Pergamon Press Inc., New York, NY, 1982.

    Google Scholar 

  35. 35.

    C.V. Thompson, H.J. Frost, and F. Spaepenm: Acta Metall., 1987, vol. 35(4), pp. 887–890.

    CAS  Article  Google Scholar 

  36. 36.

    W. E. Benson and J. A. Wert: Acta Materialia, 1998, vol. 105, pp. 5323–5333.

    Article  Google Scholar 

  37. 37.

    H. J. Frost, C. V. Thompson, and D. T. Walton: ActaMetallurgica et Materialia, 1992, vol. 40.4, pp. 779-793.

    Google Scholar 

  38. 38.

    L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollar: Surface Science, 1998, vol. 411, pp. 186–202.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Science Foundation for this work under Grants DMR-1105468 and DMR-1507417 and for equipment acquired under DMR-9974476. The authors also gratefully acknowledge H.C. Stark and Mr. Paul Aimone for generously providing the Mo rod material used for this study. The authors extend special thanks to Dr. Daniel Worthington for useful preliminary analysis of surface energy effects on DAGG initiation. The FEI XL30 ESEM and EBSD system used in this work is from the Department of Geological Sciences at the University of Texas at Austin. Sandia National Laboratories is a multi-mission laboratory managed and operated by the National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-NA0003525.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philip J. Noell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 25, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noell, P.J., Taleff, E.M. Subgrains, Texture Evolution, and Dynamic Abnormal Grain Growth in a Mo Rod Material. Metall Mater Trans A 50, 4608–4619 (2019). https://doi.org/10.1007/s11661-019-05370-2

Download citation