Study on Low Axial Load Friction Stir Lap Joining of 6061-T6 and Zinc-Coated Steel

Abstract

Friction stir lap joining of 6061-T6 and zinc-coated steel was performed using a high rotation speed and small tools with different pin lengths. During the welding process, the average axial force ranged from 0.2 to 1.1 kN, which is smaller than that for conventional friction stir welding. Satisfactory surface formation was achieved using a pinless tool and smaller plunge depth. The highest failure load of 2.26 kN was achieved for a pin length of 0.3 mm, plunge depth of 0.3 mm, and welding speed of 50 mm/min. The specimen fractured at the advance side of the 6061-T6 base metal. A continuous and compact interface layer with a thickness of 5.2 μm was formed. The main component of the intermetallic compound at the interface was Fe4Al13. The intermetallic compound was tightly connected and bound to the steel galvanized sheet and aluminum side.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    G. Kobe: Chilton’s Autom. Industries, 1994, vol. 174, pp. 44.

    Google Scholar 

  2. 2.

    S. Ramasamy: Weld. J., 2000, vol. 79, pp. 35–39.

    CAS  Google Scholar 

  3. 3.

    H. M. Liang, K. Yan, Q.Z. Wang and Y. Zhao: Journal of Materials Engineering and Performance, 2016, vol. 25, pp. 5486–93.

    CAS  Article  Google Scholar 

  4. 4.

    A. Bagheri, T. Azdast and A. Doniavi: Materials and Design, 2013, vol.43, pp. 402–409.

    CAS  Article  Google Scholar 

  5. 5.

    X. Cao and M. Jahazi: Materials and Design, 2011, vol.32, pp. 1-11.

    Article  Google Scholar 

  6. 6.

    D. H. Choi, B. W. Ahn, C. Y. Lee, Y. M. Yeon, K. Song and S. B. Jung: Intermetallics, 2011, vol. 19, pp. 125-130.

    CAS  Article  Google Scholar 

  7. 7.

    R. S. Mishra and Z. Y. Ma: Materials Science and Engineering, 2005, vol.50, pp.1-78.

    Article  Google Scholar 

  8. 8.

    K. E. Knipström and B. Pekkari: Welding Journal, 1997, vol. 9, pp. 55-59.

    Google Scholar 

  9. 9.

    A. Elrefaey, M. Gouda, M. Takahashi and K. Ikeuchi: Journal of Materials Engineering and Performance, 2005, vol. 14, pp. 10-17.

    CAS  Article  Google Scholar 

  10. 10.

    H. Das, S. Basak, G. Das, T. K. Pal: Advanced Materials Research, 2012,vol. 628, pp. 7.

    Article  Google Scholar 

  11. 11.

    K. Kimapong and T. Watanabe: Materials Transactions, 2005, vol. 46, pp. 835-841.

    CAS  Article  Google Scholar 

  12. 12.

    K. Kimapong and T.Watanabe: Materials Transactions, 2005, vol. 46, pp. 2211-17.

    CAS  Article  Google Scholar 

  13. 13.

    Y. C. Chen and K. Nakata: Metallurgical and Materials Transactions A, 2008, vol. 39, pp. 1985-92.

    CAS  Article  Google Scholar 

  14. 14.

    Y. C. Chen, T. Komazaki, T. Tsumura and K. Nakata: Materials Science and Technology, 2008, vol.24, pp. 33-39.

    CAS  Article  Google Scholar 

  15. 15.

    Y. C. Chen, T. Komazaki, Y. G. Kim, T. Tsumura, K. Nakata: Materials Chemistry and Physics, 2008, vol. 111, pp. 375-380.

    CAS  Article  Google Scholar 

  16. 16.

    G. Zhang, W. Su, J. Zhang and Z. Wei: Metallurgical & Materials Transactions A, 2011, vol.42, pp. 2850-61.

    Article  Google Scholar 

  17. 17.

    K. Kumar, S. V. Kailas: Materials and Design, 2007, vol. 29, pp. 791-797.

    Article  Google Scholar 

  18. 18.

    S. Chen, Y. Zhou, J. Xue, R. Ni, Y. Guo and J. Dong: Journal of Materials Engineering and Performance, 2017, vol. 26, pp. 1-9.

    Article  Google Scholar 

  19. 19.

    Joaquin M. Piccini, Hernan G. Svoboda: Procedia Materials Science, 2015, vol. 9, pp. 504-513.

    CAS  Article  Google Scholar 

  20. 20.

    A. Yazdipour, A. Heidarzadeh: Int. J. Adv. Manuf. Technol. 2016, 87(9–12), pp. 1-8.

    Google Scholar 

  21. 21.

    G. L. Qin, Y. H. Su, S. J. Wang: Transactions of Nonferrous Metals Society of China, 2014,vol. 24(4), pp. 989-995.

    CAS  Article  Google Scholar 

  22. 22.

    A. Naumov, C. Mertin, F. Korte, G. Hirt, and U. Reisgen: Production Engineering, 2017, vol. 11(2), pp. 175-182.

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Qing Lan Project, the National Post-Doctoral Fund (2017M611749), the National Natural Science Foundation of China (51675248), the Natural Science Fund of the Jiangsu Higher Education Institutions of China (17KJA460006), and the Natural Science Foundation of Jiangsu (BK20171308). The authors would also like to thank Tiffany Jain, M.S., from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of an earlier draft of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiaqi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 22, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhang, J., Wang, D. et al. Study on Low Axial Load Friction Stir Lap Joining of 6061-T6 and Zinc-Coated Steel. Metall Mater Trans A 50, 4642–4651 (2019). https://doi.org/10.1007/s11661-019-05369-9

Download citation