Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel


The roles of grain size, texture, strain, and strain rate on the thermal and mechanical stability of austenite in AISI 321 metastable austenitic stainless steel were studied. Ultrafine grain (UFG), fine grain (FG), and coarse grain (CG) specimens with average grain sizes of 0.24, 3, and 37 µm sizes, respectively, were investigated. To determine the thermal stability of austenite (TSA), samples were soaked in liquid nitrogen (− 196 °C) for varying times between 0.5 and 24 hours. On the other hand, the mechanical stability of austenite (MSA) was studied by subjecting cylindrical specimens to both quasi-static (4.4 × 10−3 s−1) and dynamic loading conditions (between 1300 and 8800 s−1). Thermally-induced α′-martensite was only observed at an incumbent time in AISI 321 to suggests an isothermal martensitic transformation occurred. Both Kurdjumov-Sachs (\( \{ 111\}_{\gamma } ||\{ 110\}_{{\alpha^{\prime}}} \) and \( \langle \bar{1}01\rangle_{\gamma } ||\langle 1\bar{1}1\rangle_{{\alpha^{\prime } }} \)) and Nishiyama–Wasserman (\( \{ 111\}_{\gamma } ||\{ 110\}_{{\alpha^{\prime}}} \) and \( \langle 112\rangle_{\gamma } ||\langle 011\rangle_{{\alpha^{\prime } }} \)) orientation relationships existed between the untransformed γ and thin-plate α′-martensite. The thermally-induced phase transformation was highly suppressed in UFG specimens. While TSA decreased with an increase in grain size, MSA decreased with a decrease in grain size. While thin-plate α′ predominantly formed in the thermally-treated AISI 321 steel (FG and CG specimens only), lath and irregularly-shaped α′ formed in the specimens deformed under quasi-static and dynamic loading conditions, respectively. Irrespective of strain rate, deformation-induced α′ in UFG specimens inherited the morphology of the deformed austenite grain that is equiaxed. Irrespective of grain size, MSA also decreased with increase in strain (up to a critical strain for specimens deformed under dynamic loading condition) and decrease in strain rate. In the event of adiabatic shear band (ASB) formation in a specimen deformed at high strain rate, MSA increased as the ASB was approached due to the temperature rise in the ASB region. Electron backscattered diffractometry examination revealed that the evolution of both thermally- and deformation-induced martensite is orientation-dependent in FG and CG specimens. The instability (thermal and mechanical) of the austenite phase is highest in the RD/CD||[100]-oriented grains (RD and CD are rolling and compression directions, respectively), followed by grains oriented near RD/CD||[110] and RD/CD||[111], in that order. These findings could open a new window of engineering the initial texture of metastable austenitic stainless steel to either aid thermally and/or mechanically-stable austenite phase or promote both isothermal and deformation-induced martensitic phase transformation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    J. Y. Choi, T. Fukuda, and T. Kakeshita: Mater. Sci. Forum, 2010, vol. 654–656, pp. 130–133.

    Google Scholar 

  2. 2.

    P. R. Rios and J. R. C. Guimarães: Mater. Res., 2016, vol. 19, pp. 490–495.

    CAS  Google Scholar 

  3. 3.

    H. Zheng, W. Wang, D. Wu, S. Xue, Q. Zhai, J. Frenzel, and Z. Luo: Intermetallics, 2013, vol. 36, pp. 90–95.

    CAS  Google Scholar 

  4. 4.

    T. Kakeshita, T. Saburi,K. Shimizu: Philos. Mag. B Phys. Condens. Mater. 2000, vol. 80, pp. 171–181.

    CAS  Google Scholar 

  5. 5.

    E. Yasar, E. Güler, H. Güngünes, and T. N. Durlu: Mater. Charact., 2008, vol. 59, pp. 769–772.

    CAS  Google Scholar 

  6. 6.

    T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi, and M. Date: Mater. Trans. JIM, 1993, vol. 34, pp. 423–428.

    Google Scholar 

  7. 7.

    D. E. Laughlin, N. J. Jones, A. J. Schwartz, and T. B. Massalski: Int. Conf. Martensitic Transform. 2008, 2013, pp. 141–144.

    Google Scholar 

  8. 8.

    J. M. Nam, T. Terai, and T. Kakeshita: J. Alloys Compd., 2013 vol. 577, pp. S348–S352.

    CAS  Google Scholar 

  9. 9.

    I. Y. Georgieva; and I. I. Nikitina: Met Sci Heat Treat, 1972, vol. 5, pp. 68–72.

    Google Scholar 

  10. 10.

    D. Z. Yang and C. M. Wayman: Scr. Metall., 1983, vol. 17, pp. 1377–1379.

    CAS  Google Scholar 

  11. 11.

    M. B. Leban and R. Tisu: Eng. Fail. Anal., 2013, vol. 33, pp. 430–438.

    CAS  Google Scholar 

  12. 12.

    K. Spencer, J. D. Embury, K. T. Conlon, M. Véron, and Y. Bréchet: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 873–881.

    Google Scholar 

  13. 13.

    P. R. Rios, G. SilvaDrumond, T. Neves, J. R. C. Guimarães: Mater. Sci. Forum (2014), 783, pp. 2182–2187.

    Google Scholar 

  14. 14.

    A. A. Tiamiyu, J. A. Szpunar, A. G. Odeshi, I. Oguocha, M. Eskandari: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5990–6012.

    Google Scholar 

  15. 15.

    C. Weinong and S. Bo: Split Hopkinson (Kolsky) Bar: Design, Testing and Applications (Mechanical Engineering Series), Illustrate. New York: Springer Science & Business Media, 2010.

    Google Scholar 

  16. 16.

    J. Talonen, P. Aspegren, and H. Hänninen: Mater. Sci. Technol., 2004, vol. 20, pp. 1506–1512.

    CAS  Google Scholar 

  17. 17.

    Y. F. Shen, N. Jia, Y. D. Wang, X. Sun, L. Zuo, and D. Raabe: Acta Mater., 2015, vol. 97, pp. 305–315.

    CAS  Google Scholar 

  18. 18.

    H. F. G. DeAbreu, S. S. DeCarvalho, P. DeLimaNeto, R. P. DosSantos, V. N. Freire, P. M. D. O. Silva, and S. S. M. Tavares: Mater. Res., 2007, vol. 10, pp. 359–366.

    Google Scholar 

  19. 19.

    H.K.D.H. Bhadeshia and R.W.K. Honeycombe: in Steels: Microstructure and Properties, Third edition, Butterworth-Heinemann, Boston, 2006, pp. 95–128.

    Google Scholar 

  20. 20.

    Y. Matsuoka, T. Iwasaki, N. Nakada, and T. Tsuchiyama: ISIJ Int., 2013, vol. 53, pp. 1224–1230.

    CAS  Google Scholar 

  21. 21.

    Y. L. Chang, P. Y. Chen, Y. T. Tsai, and J. R. Yang: Mater. Charact., 2016, vol. 113, pp. 17–25.

    CAS  Google Scholar 

  22. 22.

    L. Bracke, K. Verbeken, L. Kestens, and J. Penning: Acta Mater., 2009, vol. 57, pp. 1512–1524.

    CAS  Google Scholar 

  23. 23.

    H. Y. Lee, H. W. Yen, H. T. Chang, and J. R. Yang: Scr. Mater., 2010, vol. 62, pp. 670–673.

    CAS  Google Scholar 

  24. 24.

    T. Maki: in Phase Transformations in Steels, Woodhead Publishing, Oxford, 2012, pp. 34–58.

  25. 25.

    M. Umemoto, E. Yoshitake, and I. Tamura: J. Mater. Sci., 1983, vol. 18, pp. 2893–2904.

    CAS  Google Scholar 

  26. 26.

    A. Shibata, T. Murakami, S. Morito, T. Furuhara, and T. Maki: Mater. Trans., 2008, vol. 49, pp. 1242–1248.

    CAS  Google Scholar 

  27. 27.

    S. Kajiwara and W. S. Owen: Scr. Metall., 1977, vol. 11, pp. 137–142.

    CAS  Google Scholar 

  28. 28.

    N. N. Thadhani and M. A. Meyers: Prog. Mater. Sci., 1986, vol. 30, pp. 1–37.

    CAS  Google Scholar 

  29. 29.

    A. A. Tiamiyu, A. G. Odeshi, and J. A. Szpunar: Mater. Sci. Eng. A, 2018, vol. 711, pp. 233–249.

    CAS  Google Scholar 

  30. 30.

    A. Kundu and P. C. Chakraborti: J. Mater. Sci., 2010, vol. 45, pp. 5482–5489.

    CAS  Google Scholar 

  31. 31.

    J. A. Lichtenfeld, M. C. Mataya, and C. J. Van Tyne: Metall. Mater. Trans. A, 2006, vol. 37, pp. 147–161.

    CAS  Google Scholar 

  32. 32.

    T. Iwamoto, T. Sawa, and M. Cherkaoui: Int. J. Mod. Phys. B, 2008, vol. 22, pp. 5985–5990.

    CAS  Google Scholar 

  33. 33.

    J. Talonen, H. Hänninen, P. Nenonen, and G. Pape: Metall. Mater. Trans. A, 2005, vol. 36, pp. 421–432.

    CAS  Google Scholar 

  34. 34.

    A. Das and S. Tarafder: Int. J. Plast., 2009, vol. 25, pp. 2222–2247.

    CAS  Google Scholar 

  35. 35.

    H. Yen, S. W. Ooi, M. Eizadjou, A. Breen, C. Huang, H. K. D. H. Bhadeshia, and S. P. Ringer: Acta Mater., 2015, vol. 82, pp. 100–114.

    CAS  Google Scholar 

  36. 36.

    A. A. Tiamiyu, V. Tari, J. A. Szpunar, A. G. Odeshi, and A. K. Khan: Int. J. Plast., 2018, vol. 107, pp. 79–99.

    CAS  Google Scholar 

  37. 37.

    W. S. Choi, S. Sandlöbes, N. V. Malyar, C. Kirchlechner, S. Korte-Kerzel, G. Dehm, B. C. De Cooman, and D. Raabe: Acta Mater., 2017, vol. 132, pp. 162–173.

    CAS  Google Scholar 

  38. 38.

    L. Wang, J.C. Eknfs, Y. Cai, F. Zhao, D. Fan, and S.N. Luo: J. Appl. Phys., 2015, vol. 117, pp. 084301.

    Google Scholar 

  39. 39.

    M. Karlsen, O. Grong, M. Søfferud, J. Hjelen, G. Rørvik, and R. Chiron: Metall. Mater. Trans. A, 2009, vol. 40, pp. 310–320.

    Google Scholar 

  40. 40.

    H. Zhan, W. Zeng, G. Wang, D. Kent, and M. Dargusch: Mater. Charact., 2015, vol. 102, pp. 103–113.

    CAS  Google Scholar 

  41. 41.

    J. Peirs, W. Tirry, B. Amin-Ahmadi, F. Coghe, P. Verleysen, L. Rabet, D. Schryvers, and J. Degrieck: Mater. Charact., 2013, vol. 75, pp. 79–92.

    CAS  Google Scholar 

  42. 42.

    V. F. Nesterenko, M. A. Meyers, J. C. LaSalvia, M. P. Bondar, Y. J. Chen, and Y. L. Lukyanov: Mater. Sci. Eng. A, 1997, vol. 229, pp. 23–41.

    Google Scholar 

Download references


Authors wish to acknowledge the financial support of Natural Sciences and Engineering Research Council of Canada (NSERC). A.A. Tiamiyu acknowledges the financial support provided by the Vanier Canada Graduate Scholarship for this study. The support of ACUREN Group Inc. for the use of Fischer Feritscope MP30E is well appreciated.

Author information



Corresponding author

Correspondence to A. A. Tiamiyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 3, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tiamiyu, A.A., Zhao, S., Li, Z. et al. Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel. Metall Mater Trans A 50, 4513–4530 (2019).

Download citation