On the Formation of Nanoscale Intergranular Intermetallic Compound Films in a Cu-5 at. pct Zr Alloy

Abstract

Grain boundary structure and chemical composition have been shown to play important roles in plasticity, strength, creep, diffusivity, and conductivity of fine-grained metallic materials. Wetting of grain boundaries in metallic materials with nanoscale intergranular intermetallic compound films (NIICFs) is suggested to offer enhanced strength and ductility of alloys. In the current study, the NIICF wetting Cu-Zr micrograins of the matrix is observed in a Cu-5 at. pct Zr alloy produced by powder metallurgy. The underlying mechanism responsible for the formation of these NIICFs is discussed, and the effect of these films on the strength and strain-hardening capacity of the alloy is evaluated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    J. Hu, Y.N. Shi, X. Sauvage, G. Sha and K. Lu: Science, 2017, vol. 355, pp. 1292-1296.

    CAS  Google Scholar 

  2. 2.

    T. Chookajorn, H.A. Murdoch and C.A. Schuh: Science, 2012, vol. 337, pp. 951-954.

    CAS  Google Scholar 

  3. 3.

    S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe and A. Hirata: Nature, 2017, vol. 544, pp. 460-64.

    CAS  Google Scholar 

  4. 4.

    N. Takata, Y. Ohtake, K. Kita, K. Kitagawa and N. Tsuji: Scr. Mater., 2009, vol. 60, pp. 590-593.

    CAS  Google Scholar 

  5. 5.

    N. Vo, D. Dunand and D. Seidman: Acta Mater., 2014, vol. 63, pp. 73-85.

    CAS  Google Scholar 

  6. 6.

    S.-H. Kim, H. Kim and N.J. Kim: Nature, 2015, vol. 518, pp. 77.

    CAS  Google Scholar 

  7. 7.

    Z. Jiao, J. Luan, M. Miller and C. Liu: Acta Mater., 2015, vol. 97, pp. 58-67.

    CAS  Google Scholar 

  8. 8.

    L. Huang, L. Geng and H. Peng: Prog. Mater. Sci., 2015, vol. 71, pp. 93-168.

    CAS  Google Scholar 

  9. 9.

    S.J. Dillon, M. Tang, W.C. Carter and M.P. Harmer: Acta Mater., 2007, vol. 55, pp. 6208-6218.

    CAS  Google Scholar 

  10. 10.

    P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer and M.P. Harmer: Acta Mater., 2014, vol. 62, pp. 1-48.

    CAS  Google Scholar 

  11. 11.

    M. Park and C.A. Schuh: Nature Commun., 2015, vol. 6, pp. 6858.

    CAS  Google Scholar 

  12. 12.

    M. Park, T. Chookajorn and C.A. Schuh: Acta Mater., 2018, vol. 145, pp. 123-133.

    CAS  Google Scholar 

  13. 13.

    F. Abdeljawad, P. Lu, N. Argibay, B.G. Clark, B.L. Boyce and S.M. Foiles: Acta Mater., 2017, vol. 126, pp. 528-539.

    CAS  Google Scholar 

  14. 14.

    M. Azimi and G. Akbari: J. Alloys Compd., 2011, vol. 509, pp. 27-32.

    CAS  Google Scholar 

  15. 15.

    M.A. Atwater, R.O. Scattergood and C.C. Koch: Mater. Sci. Eng. A, 2013, vol. 559, pp. 250-256.

    CAS  Google Scholar 

  16. 16.

    M. Azimi and G. Akbari: J. Alloys Compd., 2013, vol. 555, pp. 112-116.

    CAS  Google Scholar 

  17. 17.

    A. Khalajhedayati, Z. Pan and T.J. Rupert: Nat. Commun., 2016, vol. 7, pp. 10802.

    CAS  Google Scholar 

  18. 18.

    D. Zhou, Z. Quadir, C. Kong, H. Pan, Z. Liu, G. Sha, P. Munroe and D. Zhang: Materialia, 2018, vol. 4, pp. 268-275.

    Google Scholar 

  19. 19.

    Y. Lin, H. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2673-2688.

    CAS  Google Scholar 

  20. 20.

    Y. Lin, H. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia: Acta Mater., 2015, vol. 82, pp. 304-315.

    CAS  Google Scholar 

  21. 21.

    H. Asgharzadeh and H.J. McQueen: Mater. Sci. Technol., 2014, vol. 31, pp. 1016-1034.

    Google Scholar 

  22. 22.

    H. Baker: ASM Handbook, ASM International, Materials Park, 1992.

    Google Scholar 

  23. 23.

    B. Straumal, A. Mazilkin and B. Baretzky: Curr. Opin. Solid St., 2016, vol. 20, pp. 247-256.

    CAS  Google Scholar 

  24. 24.

    W.D. Kaplan, D. Chatain, P. Wynblatt and W.C. Carter: J. Mater. Sci., 2013, vol. 48, pp. 5681-5717.

    CAS  Google Scholar 

  25. 25.

    J. Zhao, J. Zhang, L. Cao, Y. Wang, P. Zhang, K. Wu, G. Liu and J. Sun: Acta Mater., 2017, vol. 132, pp. 550-564.

    CAS  Google Scholar 

  26. 26.

    A. Khalajhedayati and T.J. Rupert: JOM, 2015, vol. 67, pp. 2788-2801.

    CAS  Google Scholar 

  27. 27.

    J.D. Schuler and T.J. Rupert: Acta Mater., 2017, vol. 140, pp. 196-205.

    CAS  Google Scholar 

  28. 28.

    H. Okamoto: J. Phase Equilib. Diff., 2008, vol. 29, pp. 204-204.

    CAS  Google Scholar 

  29. 29.

    D. Zhou, X. Wang, O. Muránsky, X. Wang, Y. Xie, C. Yang and D. Zhang: Mater. Sci. Eng. A, 2018, vol. 730, pp. 238-335.

    Google Scholar 

  30. 30.

    T. Zhu and J. Li: Prog. Mater. Sci., 2010, vol. 55, pp. 710-757.

    Google Scholar 

  31. 31.

    S. Pauly, J. Bednarčik, U. Kühn and J. Eckert: Scr. Mater., 2010, vol. 63, pp. 336-338.

    CAS  Google Scholar 

  32. 32.

    H. Kimura, A. Inoue, N. Muramatsu, K. Shin and T. Yamamoto: Mater. Trans., 2006, vol. 47, pp. 1595-1598.

    CAS  Google Scholar 

  33. 33.

    B. Straumal, X. Sauvage, B. Baretzky, A. Mazilkin and R. Valiev: Scr. Mater., 2014, vol. 70, pp. 59-62.

    CAS  Google Scholar 

  34. 34.

    S.J. Dillon, M.P. Harmer and J. Luo: JOM, 2009, vol. 61, pp. 38-44.

    Google Scholar 

  35. 35.

    M.S. El-Eskandarany, A.A. Mahday, H. Ahmed and A. Amer: J. Alloys Compd., 2000, vol. 312, pp. 315-325.

    CAS  Google Scholar 

  36. 36.

    I.A. Ovid’ko, R.Z. Valiev and Y.T. Zhu: Prog. Mater. Sci., 2018, vol. 94, pp. 462-540.

    Google Scholar 

  37. 37.

    R. Schwab: Int. J. Plasticity, 2019, vol. 113, pp. 218-235.

    CAS  Google Scholar 

  38. 38.

    Y.-H. Zhao, X.-Z. Liao, S. Cheng, E. Ma and Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2280-2283.

    CAS  Google Scholar 

  39. 39.

    S. Cheng, Y. Zhao, Y. Zhu and E. Ma: Acta Mater., 2007, vol. 55, pp. 5822-5832.

    CAS  Google Scholar 

  40. 40.

    Y. Wang, M. Chen, F. Zhou and E. Ma: Nature, 2002, vol. 419, pp. 912.

    CAS  Google Scholar 

  41. 41.

    E. Ma and T. Zhu: Mater. Today, 2017, vol. 20, pp. 323-331.

    CAS  Google Scholar 

  42. 42.

    X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang and Y. Zhu: Proc. Natl. Acad. Sci., 2015, vol. 112, pp. 14501-14505.

    CAS  Google Scholar 

  43. 43.

    T. Fang, W. Li, N. Tao and K. Lu: Science, 2011, vol. 331, pp. 1587-1590.

    CAS  Google Scholar 

  44. 44.

    Y. Ling: AMP J. Technol., 1996, vol. 5, pp. 37-48.

    Google Scholar 

Download references

Acknowledgments

D.S. Zhou acknowledges the financial support from the Natural Science Foundation of China (Grant No. 51701036) to this study. D.S. Zhou also wishes to extend his thanks to Mr. Yonghui Sun and Mr. Yu Dong for their help with STEM-HAADF characterization.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dengshan Zhou or Chao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 1, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Wang, H., Muránsky, O. et al. On the Formation of Nanoscale Intergranular Intermetallic Compound Films in a Cu-5 at. pct Zr Alloy. Metall Mater Trans A 50, 4569–4581 (2019). https://doi.org/10.1007/s11661-019-05360-4

Download citation