A Review of Eutectic Au-Ge Solder Joints

Abstract

Gold-germanium (Au-Ge) joints have been part of the electronics industry since the birth of the solid state transistor. Today they find their role as a reliable joining technology, especially for high-temperature applications. This article is a literature study reviewing Au-Ge joints: Their uses, properties, material compatibility, application techniques, and performance characteristics. The review concludes that it is possible to create high-quality and very strong Au-Ge joints with a shear strength up to 150 MPa. They are stable and reliable, showing limited degradation after thousands of hours at high temperature and thousands of thermal cycles. Joints may be used in low-stress applications up to 300 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Reprinted with permission

Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    AT&T Archives and History Center: AT&T Archives Genesis of the Transistor, AT&T Tech Channel, New York, 1965.

    Google Scholar 

  2. 2.

    The Nobel Prize in Physics 1956: http://www.nobelprize.org/nobel_prizes/physics/laureates/1956/. Accessed 13 November 2018.

  3. 3.

    United States Patent Office, 3,025,439, 1962.

  4. 4.

    United States Patent Office, 3,200,490, 1965.

  5. 5.

    K. Nishitani, O. Ishihara, H. Sawano, T. Ishii, S. Mitsui, and H. Miki (1976) Jpn. J. Appl. Phys. 16, 93–7.

    Google Scholar 

  6. 6.

    M.S. Islam and P.J. McNally: Microelectron. Eng., 1998, vol. 40, pp. 35–42.

    CAS  Google Scholar 

  7. 7.

    7 A.A. Iliadis, J.K. Zahurak, T. Neal, and W.T. Masselink: J. Electron. Mater., 1999, vol. 28, pp. 944–8.

    CAS  Google Scholar 

  8. 8.

    V. Chidambaram, H.B. Yeung, and G. Shan: Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA, https://doi.org/10.1109/ipfa.2012.6306308.

  9. 9.

    V. Chidambaram, H.B. Yeung, and G. Shan: J. Electron. Mater., 2012, vol. 41, pp. 2107–17.

    CAS  Google Scholar 

  10. 10.

    P. Ning, R. Lai, D. Huff, F. Wang, K.D.T. Ngo, V.D. Immanuel, and K.J. Karimi: IEEE Trans. Power Electron., 2010, vol. 25, pp. 16–23.

    Google Scholar 

  11. 11.

    M.J. Palmer, R.W. Johnson, and B.H. Ecedept: Int. High Temp. Electron., Santa Fe, NM, 2006.

  12. 12.

    W. Sabbah, S. Azzopardi, C. Buttay, R. Meuret, and E. Woirgard: Microelectron. Reliab., 2013, vol. 53, pp. 1617–21.

    CAS  Google Scholar 

  13. 13.

    V.R. Manikam and K.Y. Cheong: Components, Packag. Manuf. Technol. IEEE Trans., 2011, vol. 1, pp. 457–478.

    CAS  Google Scholar 

  14. 14.

    P. Zheng: Ph.D. dissertation, Dept. Electr. Comput. Eng., Auburn Univ., Auburn, AL, 2010.

  15. 15.

    A. Drevin-Bazin, F. Lacroix, and J.F. Barbot: J. Electron. Mater., 2014, vol. 43, pp. 695–701.

    CAS  Google Scholar 

  16. 16.

    S. Egelkraut, L. Frey, M. Knoerr, and A. Schletz: IEEE 12th Proc. Electron. Packag. Technol. Conf. (EPTC), Singapore, 2010, pp. 660–67.

  17. 17.

    P. Hagler, P. Henson, and R.W. Johnson: IEEE Trans. Ind. Electron., 2011, vol. 58, pp. 2673–82.

    Google Scholar 

  18. 18.

    A. Hutzler, A. Tokarski, S. Kraft, S. Zischler, and A. Schletz: IEEE Electron. Compon. Technol. Conf., Orlando, FL, 2014, pp. 1700–06.

  19. 19.

    F.L.F. Lang, S. Tanimoto, H. Ohashi, and H. Yamaguchi: 2009 Eur. Microelectron. Packag. Conf., 2009, pp. 3–7.

  20. 20.

    F. Lang, H. Yamaguchi, H. Ohashi, and H. Sato: J. Electron. Mater., 2011, vol. 40, pp. 1563–71.

    CAS  Google Scholar 

  21. 21.

    S. Msolli, O. Dalverny, J. Alexis, and M. Karama: Integr. Power Electron. Syst. (CIPS), 2010 6th Int. Conf., 2010, pp. 16–18.

  22. 22.

    L.A. Navarro, X. Perpina, P. Godignon, J. Montserrat, V. Banu, M. Vellvehi, and X. Jorda: IEEE Trans. Power Electron., 2014, vol. 29, pp. 2261–71.

    Google Scholar 

  23. 23.

    V. Chidambaram, J. Hald, and J. Hattel: J. Alloys Compd., 2010, vol. 490, pp. 170–9.

    CAS  Google Scholar 

  24. 24.

    V. Chidambaram, J. Hald, and J. Hattel: Microelectron. Reliab., 2009, vol. 49, pp. 323–30.

    CAS  Google Scholar 

  25. 25.

    H. Okamoto and T.B. Massalski: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 601–10.

    Google Scholar 

  26. 26.

    P. Godignon, X. Jorda, M. Vellvehi, X. Perpina, V. Banu, D. Lopez, J. Barbero, P. Brosselard, and S. Massetti: IEEE Trans. Ind. Electron., 2011, vol. 58, pp. 2582–9.

    Google Scholar 

  27. 27.

    L. Ma, X. Huang, and J. Zha: Int. Conf. Electron. Packag. Technol., 2013, pp. 946–49.

  28. 28.

    R. Kisiel and Z. Szczepański: Microelectron. Reliab., 2009, vol. 49, pp. 627–9.

    CAS  Google Scholar 

  29. 29.

    E. Maset, E. Sanchis-Kilders, J.B. Ejea, A. Ferreres, J. Jordán, V. Esteve, P. Brosselard, X. Jordà, M. Vellvehi, and P. Godignon: IEEE Trans. Device Mater. Reliab., 2009, vol. 9, pp. 557–62.

    CAS  Google Scholar 

  30. 30.

    S. Tanimoto, K. Watanabe, H. Tanisawa, K. Matsui, and S. Sato: Electrochem. Soc. Meet., 224th, The Electrochemical Society, San Francisco, CA, 2013, p. 1.

  31. 31.

    S. Tanimoto, K. Matsui, Y. Murakami, H. Yamaguchi, and H. Okumura: in IMAPS Int. Conf. High Temp. Election. (HiTEC), IMAPS, Albuquerque, NM, 2010, pp. 32–9.

  32. 32.

    V. Banu, P. Godignon, X. Jorda, M. Vellvehi, J. Millan, P. Brosselard, D. Lopez, and J. Barbero: Proc. Int. Semicond. Conf. CAS, 2010, vol. 2, pp. 397–400.

  33. 33.

    P. Godignon, X. Jorda, V. Banu, M. Vellvehi, J. Millan, P. Brosselard, D. Lopez, and J. Barbero: Power Semicond. Devices & IC’s (ISPSD), 2010 22nd Int. Symp., 2010, pp. 351–54.

  34. 34.

    F. Lang, H. Nakagawa, and H. Yamaguchi: Gold Bull., 2013, vol. 47, pp. 109–18.

    Google Scholar 

  35. 35.

    S. Tanimoto and K. Matsui: IEEE Trans. Electron Devices, 2015, vol. 62, pp. 258–69.

    CAS  Google Scholar 

  36. 36.

    S. Tanimoto, H. Tanisawa, K. Watanabe, K. Matsui, and S. Sato: Mater. Sci. Forum, 2013, vol. 740–742, pp. 1040–3.

    Google Scholar 

  37. 37.

    R. Chanchani, C.D. Nordquist, R.H. Olsson, T. Peterson, R. Shul, C. Ahlers, T.A. Plut, and G.A. Patrizi: Proc. Electron. Components Technol. Conf., 2011, pp. 1604–09.

  38. 38.

    E.J. Schwalbach and P.W. Voorhees: Nano Lett., 2008, vol. 8, pp. 3739–45.

    CAS  Google Scholar 

  39. 39.

    Y.-C. Shih, M. Murakami, E.L. Wilkie, and A.C. Callegari: J. Appl. Phys., 1987, vol. 62, pp. 582–90.

    CAS  Google Scholar 

  40. 40.

    M. Pecht: Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines: A Focus on Reliability, John Wiley & Sons, Inc., New York, 1994.

    Google Scholar 

  41. 41.

    M. Schwartz: Soldering - Understanding the Basics, ASM International, Materials Park, 2014.

    Google Scholar 

  42. 42.

    J. Wang, C. Leinenbach, and M. Roth: J. Alloy. Compd., 2009, vol. 481, pp. 830–6.

    CAS  Google Scholar 

  43. 43.

    E.S. Tasci, M.H.F. Sluiter, A. Pasturel, and N. Jakse: Phys. Rev. B, 2010, vol. 81, pp. 1–3.

    Google Scholar 

  44. 44.

    L. Magagnin, R. Maboudian, and C. Carraro: J. Phys. Chem. B, 2002, vol. 106, pp. 401–7.

    CAS  Google Scholar 

  45. 45.

    D.G. Popescu and M.A. Husanu: Rapid Res. Lett., 2013, vol. 7, pp. 274–7.

    CAS  Google Scholar 

  46. 46.

    D.G. Popescu and M. A. Husanu: Thin Solid Films, 2014, vol. 552, pp. 241–9.

    CAS  Google Scholar 

  47. 47.

    Y. Eichhammer, J. Roeck, N. Moelans, F. Iacopi, B. Blanpain, and M. Heyns: Arch. Met. Mater., 2008, vol. 53, pp. 1133–9.

    CAS  Google Scholar 

  48. 48.

    A.P. Kryshtal, R. V. Sukhov, and A.A. Minenkov: J. Alloys Compd., 2012, vol. 512, pp. 311–5.

    CAS  Google Scholar 

  49. 49.

    V. Chidambaram, E.P.J. Rong, G.C. Lip, and M.W.D. Rhee: Electron. Packag. Technol. Conf., IEEE, Singapore, 2013, pp. 202–07.

  50. 50.

    F.C. Campbell: Phase Diagrams - Understanding the Basics, ASM International, Ohio, 2012.

    Google Scholar 

  51. 51.

    R.P. Elliott and F.A. Shunk: Bull. Alloy Phase Diagrams, 1980, vol. 1, pp. 51–4.

    Google Scholar 

  52. 52.

    D. Olsen and H. Berg: IEEE Trans. Compon. Hybrids Manuf. Technol., 1979, vol. 2, pp. 257–63.

  53. 53.

    M.F. Sousa, S. Riches, C. Johnston, and P.S. Grant: High Temp., 2010, pp. 1–6.

  54. 54.

    Z.W. Chen, J.K.L. Lai, and C.H. Shek: J. Phys. D. Appl. Phys., 2006, vol. 39, pp. 4544–8.

    CAS  Google Scholar 

  55. 55.

    D. Lu and C.P. Wong, eds.: Materials for Advanced Packaging, Springer-Verlag New York Inc., 2009.

    Google Scholar 

  56. 56.

    MIL-STD-202G, 2002.

  57. 57.

    V. Chidambaram, J. Hald, R. Ambat, and J. Hattel: Jom, 2009, vol. 61, pp. 59–65.

    CAS  Google Scholar 

  58. 58.

    G.O. Cook and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23.

    CAS  Google Scholar 

  59. 59.

    W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.

    CAS  Google Scholar 

  60. 60.

    W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.

    CAS  Google Scholar 

  61. 61.

    W.D. MacDonald and T.W. Eagar: Met. Sci. Join., 1992, pp. 93–100.

  62. 62.

    W.D. MacDonald and T.W. Eagar: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 315–25.

    CAS  Google Scholar 

  63. 63.

    L. Bernstein: J. Electrochem. Soc., 1966, vol. 113, pp. 1282–8.

    CAS  Google Scholar 

  64. 64.

    L. Bernstein and H. Bartholomew: Trans. Metall. Soc. Aime, 1966, vol. 236, pp. 405–12.

    CAS  Google Scholar 

  65. 65.

    T.A. Tollefsen, A. Larsson, O.M. Løvvik, and K. Aasmundtveit: Metall. Mater. Trans. B , 2012, vol. 43, pp. 397–405.

    Google Scholar 

  66. 66.

    T.A. Tollefsen, O.M. Løvvik, K. Aasmundtveit, and A. Larsson: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2914–6.

    Google Scholar 

  67. 67.

    K.E. Aasmundtveit, T.-T. Luu, H.-V. Nguyen, A. Larsson, and T.A. Tollefsen: Ind thjkjf jgjiof klfjefije. In: Intermetallic compounds - Formation and applications, M. Aliofkhazrai, ed., 1st edn., IntechOpen, London, 2018, pp. 43–72.

    Google Scholar 

  68. 68.

    T.T. Luu, N. Hoivik, K. Wang, K.E. Aasmundtveit, and A.B. Vardøy: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5266–74.

    Google Scholar 

  69. 69.

    S.A. Paknejad and S.H. Mannan: Microelectron. Reliab., 2017, vol. 70, pp. 1–11.

    CAS  Google Scholar 

  70. 70.

    K.S. Siow: J. Electron. Mater., 2014, vol. 43, pp. 947–61.

    CAS  Google Scholar 

Download references

Acknowledgments

We want to acknowledge the Norwegian Research Council for supporting this project (Project No.: 244915).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andreas Larsson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 8, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larsson, A., Tollefsen, T.A., Løvvik, O.M. et al. A Review of Eutectic Au-Ge Solder Joints. Metall Mater Trans A 50, 4632–4641 (2019). https://doi.org/10.1007/s11661-019-05356-0

Download citation