Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2092–2102 | Cite as

Effect of Alloying Elements on Microstructure and Mechanical Properties of Air-Cooled Bainitic Steel

  • Minal ShahEmail author
  • S. K. Das
  • S. Ghosh Chowdhury


In the present investigation, a carbide-free bainitic steel has been produced in the laboratory through the air cooling route. Optimization of the alloying elements was done based on thermodynamic and kinetic calculations. Emphasis was given to obtain ultrafine bainitic microstructure by maximizing the driving force and lowering the transformation temperature of bainite formation. In addition to bainite, the microstructure contained a small amount of austenite and martensite. It was observed that Mn decreases ΔGγ  α to a greater extent as compared to Cr and Si. Therefore, a low Mn-high Cr alloy exhibited large driving force and low Bs temperature. Si promoted carbon partitioning in the adjacent austenite to make it more stable. Therefore, the transformation of deformation-induced martensite from the retained austenite during the deformation process was restricted, resulting in higher toughness of the alloy. Thus, the air-cooled bainitic steel produced in lab scale showed better strength, toughness, and hardness than the conventional bainitic steel produced by the isothermal route.



The authors are thankful to the director, CSIR–National Metallurgical Laboratory, for his kind permission to publish this work. The fruitful technical discussion with Dr. M. Ghosh, Sr. Scientist, CSIR-NML, is gratefully acknowledged.


  1. 1.
    H.K.D.H. Bhadeshia and D.V. Edmonds: Met. Sci., 1980, vol. 14, pp. 41–49.CrossRefGoogle Scholar
  2. 2.
    R.C.D. Richardson: Wear, 1967, vol. 10, pp. 291–309.CrossRefGoogle Scholar
  3. 3.
    G. Gomez, T. Perez, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2009, vol. 25, pp. 1501–07.CrossRefGoogle Scholar
  4. 4.
    G. Gomez, T. Perez, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2009, vol. 25, pp. 1508–12.CrossRefGoogle Scholar
  5. 5.
    T. Sourmail, V. Smanio, F.G. Caballero, J. Cornide, C. Capdevilla, C. Garcia-Mateo, T. Chandra, M. Ionescu, and D. Mantovani: Mater. Sci. Forum, 2012, 706, 2308–13.CrossRefGoogle Scholar
  6. 6.
    C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: ISIJ Int., 2003, vol. 43, pp. 1238–43.CrossRefGoogle Scholar
  7. 7.
    C. Garcia-Mateo and F.G. Caballero: ISIJ Int., 2007, vol. 45, pp. 1736–40.CrossRefGoogle Scholar
  8. 8.
    Sourav Das and Arunansu Haldar: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1844–53.CrossRefGoogle Scholar
  9. 9.
    K. Wang, Z. Tan, G. Gao, B. Gao, X. Gui, R.D.K. Misra, B. Bai: Mater. Sci. Eng. A, 2016, 675, 120–27.CrossRefGoogle Scholar
  10. 10.
    D. Seferian: Metallurgy of Welding, Mashgiz, Moscow, 1963, p. 268 (in Russian).Google Scholar
  11. 11.
    P. Clayton and N. Jin: Wear, 1996, vol. 200, pp. 74–82.CrossRefGoogle Scholar
  12. 12.
    P. Clayton and R. Devanathan: Wear, 1992, vol. 156, pp. 121–31.CrossRefGoogle Scholar
  13. 13.
    J. Kalousek, D.M. Fegrdo, and E.E. Laufer: Wear, 1985, vol. 105, pp. 199–222.CrossRefGoogle Scholar
  14. 14.
    P.H. Shipway, S.J. Wood, and A.H. Dent: Wear, 1997, vols. 203–204, pp. 196–205.CrossRefGoogle Scholar
  15. 15.
    E. Vuorinen, A. Linström, P. Rubin, E. Navara, and M. Oden: Pellets 2006: Proc. 2nd World Conf. on ‘Pellets,’ Jonkoping, Sweden, June 2006, Swedish Bioenergy Association (SVEBIO), Stockholm, 2006, pp. 151–55.Google Scholar
  16. 16.
    Hong-Sheng Fang, Qi Li, Bing-Zhe Bai, Zhi-Gang Yang, Dong-Yu Liu, and Fu-Bao Yang: Int. J. ISSI, 2005, vol. 2, pp. 9–18.Google Scholar
  17. 17.
    Xiangwei Kong and Chunlin Qiu: J. Mater. Sci. Technol., 2013, vol. 29, pp. 446–50.CrossRefGoogle Scholar
  18. 18.
    L. Zhang, A. Pittner, T. Michael, M. Rhode, and T. Kannengiesser: Sci. Technol. Weld. Join., 2015, vol. 20, p. 371.CrossRefGoogle Scholar
  19. 19.
    E. Keehan, L. Karlsson, H.-O. Andrén, and H.K.D.H. Bhadeshia: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 9–18CrossRefGoogle Scholar
  20. 20.
    H.K.D.H. Bhadeshia: Bainite in Steels: Theory and Practice, 3rd ed., Maney Publishing, Leeds 2015, p. 286.Google Scholar
  21. 21.
    F.B. Pickering and T. Gladman: Iron Steel Inst., 1963, vol. 81, p. 10.Google Scholar
  22. 22.
    A.S. Keh and S. Weissmann: Electron Microscopy and the Strength of Crystals, Interscience, New York, NY, 1963, pp. 231–300.Google Scholar
  23. 23.
    C. Garcia-Mateo: Mater. Charact., 2016, vol. 122, pp. 83–89.CrossRefGoogle Scholar
  24. 24.
    A.A.B. Sugden and H.K.D.H. Bhadeshia: Metall. Trans. A, 1988, vol. 19A, pp. 1597–1602.CrossRefGoogle Scholar
  25. 25.
    J. Daigne, M. Guttmann, and J.P. Naylor: Mater. Sci. Eng., 1982, vol. 56, pp. 1–10.CrossRefGoogle Scholar
  26. 26.
    S.B. Singh and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1998, vol. 245, pp. 72–79.CrossRefGoogle Scholar
  27. 27.
    H.K.D.H. Bhadeshia and D.V. Edmonds: Mater. Sci., 1983, vol. 17, pp. 420–25.Google Scholar
  28. 28.
    A.R. Kiani-Rashid: J. Alloys Compd., 2009, vol. 474, pp. 490–98.CrossRefGoogle Scholar
  29. 29.
    H.K.D.H. Bhadeshia: Bainite in Steels, The Institute of Materials, Cambridge University Press, Cambridge, United Kingdom, 1992.Google Scholar
  30. 30.
    E. Kozeschnik and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2013, vol. 4, pp. 343–47.Google Scholar
  31. 31.
    Mathew Peet and H.K.D.H. Bhadeshia: MUCG 83. Mater. Algor. Proj., 2011.Google Scholar
  32. 32.
    K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.Google Scholar
  33. 33.
    W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, p. 349–359.Google Scholar
  34. 34.
    T. Kunitake and Y. Okada: J. Iron Steel Inst., 1998, vol. 84, p. 137–141.CrossRefGoogle Scholar
  35. 35.
    J.S. Kirkaldy and D. Venugopalan: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, p. 125–48.Google Scholar
  36. 36.
    Y.-K. Lee: J. Mater. Sci. Lett., 2002, vol. 21, pp. 1253–55.CrossRefGoogle Scholar
  37. 37.
    H.K.D.H. Bhadeshia and D.V. Edmonds: Acta Metall., 1980, vol. 28, pp. 1265–73.CrossRefGoogle Scholar
  38. 38.
    S. Khare, K. Lee, and H.K.D.H. Bhadeshia: Int. J. Mater. Res., 2009, 100, 1513–20.CrossRefGoogle Scholar
  39. 39.
    Kazuo Yamanaka and Yasuya Ohmori: ISIJ, 1977, vol. 17, p. 92.Google Scholar
  40. 40.
    M.U. Cohen: Rev. Sci. Instrum., 1935, vol. 6, pp. 68–74.CrossRefGoogle Scholar
  41. 41.
    B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing Company Inc., Palo Alto, CA, 1978, pp. 363–66.Google Scholar
  42. 42.
    L. Lutterotti, S. Matthies, D. Chateigner, and S. Ferrari: Mater. Sci. Forum, 2002, vols. 408–412, pp. 1603–08.CrossRefGoogle Scholar
  43. 43.
    G. Ischia, H.-R. Wenk, L. Lutterotti, and F. Berberich: J. Appl. Cryst., 2005, vol. 38 (2), pp. 377–80.CrossRefGoogle Scholar
  44. 44.
    D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.Google Scholar
  45. 45.
    M.J. Peet:, 2009.Google Scholar
  46. 46.
  47. 47.
    L.J. Habraken and M. Ecomopoulos: Transformation and Hardenibility in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, pp. 69–106.Google Scholar
  48. 48.
    B.L. Bramfitt and J.G. Speer: Mater. Trans. A, 1990, vol. 21A, pp. 817–29.CrossRefGoogle Scholar
  49. 49.
    F.G. Caballero, H. Roelofs, S. Hasler, C. Capdevila, J. Chao, J. Cornide, C. Garcia-Mateo: Mater. Sci. Technol., 2012, 28, 95–102.CrossRefGoogle Scholar
  50. 50.
    L.C. Chang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 874–81.CrossRefGoogle Scholar
  51. 51.
    H. Huang, M.Y. Sherif, and P.E.J. Rivera-Diaz-del-Castillo: Acta Mater., 2013, vol. 61 pp. 1639–47.CrossRefGoogle Scholar
  52. 52.
    T. Angel: J. Iron Steel Inst., 1954, vol. 177, pp. 165–74.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Materials Engineering DivisionCSIR–National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations