Skip to main content
Log in

Microstructure Development of 308L Stainless Steel During Additive Manufacturing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In situ high-energy X-ray diffraction measurements were completed during deposition of 308L stainless steel wire onto a 304L stainless steel substrate. Attempts were made to extract microstructural features such as phase fraction and internal stress, as well as temperature evolution immediately following the deposition. The limited data that could be collected during deposition and rapid solidification are critically examined. High-energy X-rays coupled with relatively slow detectors were utilized to enable determination of orientation-dependent lattice parameters accurately enough to comment on phase strain evolution between austenite and ferrite. Information about the hydrostatic and deviatoric stress states of the constituent phases was determined on time scales that are relevant to their development. However, the time resolution of the technique was insufficient to monitor phase evolution during the solid–solid phase transformation and, more so, during solidification. Moreover, the accurate and absolute determination of inherently statistical parameters, such as phase fraction, depends critically on the ability to sample a statistically significant numbers of grains in the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev., 2012, 3, vol. 57, pp. 133-164.

    Article  Google Scholar 

  2. [2] S.A. Davis, J.M. Vitek, T.L. Hebble, Welding Journal, 1987, vol. 66, pp. S289-S300.

    Google Scholar 

  3. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, Philip J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nature Materials, 2017, vol. 17, pp. 63–71.

    Article  Google Scholar 

  4. V. Richter-Trummer, S.M.O. Tavares, P. Moreira, M.A.V. de Figueiredo, P. de Castro, Ciência & Tecnologia dos Materiais, 2008, 1-2, vol. 20, pp. 114-119.

    Google Scholar 

  5. L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, Journal of Materials Research and Technology, 2012, 3, vol. 1, pp. 167-177.

    Article  Google Scholar 

  6. [6] R. Casati, M. Coduri, N. Lecis, C. Andrianopoli, M. Vedani, Materials Characterization, 2018, vol. 137, pp. 50-57.

    Article  Google Scholar 

  7. B.K. Foster, A.M. Beese, J.S. Keist, E.T. McHale, T.A. Palmer, Metall. Mater. Trans. A, 2017, 9, vol. 48A, pp. 4411-4422.

    Article  Google Scholar 

  8. D.W. Brown, J.D. Bernardin, J.S. Carpenter, B. Clausen, D. Spernjak, J.M. Thompson, Mater. Sci. Eng., A, 2016, vol. 678, pp. 291-298.

    Article  Google Scholar 

  9. P. Mercelis, J.P. Kruth, Rapid Prototyping Journal, 2006, 5, vol. 12, pp. 254-265.

    Article  Google Scholar 

  10. [10] A. Riemer, S. Leuders, M. Thoene, H.A. Richard, T. Troester, T. Niendorf, Eng. Fract. Mech., 2014, vol. 120, pp. 15-25.

    Article  Google Scholar 

  11. I. Yadroitsev, I. Yadroitsava, Virtual and Physical Prototyping, 2015, 2, vol. 10, pp. 67-76.

    Article  Google Scholar 

  12. [12] B.A. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pining, M. Hofmann, D.J. Jarvis, Mater. Des., 2016, vol. 89, pp. 559-567.

    Article  Google Scholar 

  13. A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, Metall. Mater. Trans. A, 2014, 13, vol. 45A, pp. 6260-6270.

    Article  Google Scholar 

  14. T. Watkins, H. Bilheux, K. An, A. Payzant, R. Dehoff, C. Duty, W. Peter, C. Blue, C. Brice, Adv. Mater. Processes, 2013, 3, vol. 171, pp. 23-27.

    Google Scholar 

  15. T. Gnaeupel-Herold, J. Slotwinski, and S. Moylan: in: 40th Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing, D.E. Chimenti, L.J. Bond, D.O. Thompson, eds., 2014, vols. 33a and 33b, pp. 1205–12.

  16. [16] R. Xie, Y. Zhao, G. Chen, X. Lin, S. Zhang, S. Fan, Q. Shi, Mater. Des., 2018, vol. 150, pp. 49-54.

    Article  Google Scholar 

  17. [17] J.C. Heigel, P. Michaleris, T.A. Palmer, J. Mater. Process. Technol., 2015, vol. 220, pp. 135-145.

    Article  Google Scholar 

  18. J.W. Elmer, J. Wong, T. Ressler, Scr. Mater., 2000, 8, vol. 43, pp. 751-757.

    Article  Google Scholar 

  19. T. Ressler, J. Wong, J.W. Elmer, Journal of Physical Chemistry B, 1998, 52, vol. 102, pp. 10724-10735.

    Article  Google Scholar 

  20. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, T. Sun, Scientific Reports, 2017, vol. 7, pp.

    Google Scholar 

  21. [21] C. Kenel, D. Grolimund, J.L. Fife, V.A. Samson, S. Van Petegem, H. Van Swygenhoven, C. Leinenbach, Scr. Mater., 2016, vol. 114, pp. 117-120.

    Article  Google Scholar 

  22. S. Selvi, A. Vishvaksenan, E. Rajasekar, Defence Technology, 2018, 1, vol. 14, pp. 28-44.

    Article  Google Scholar 

  23. D.R. Haeffner, J.D. Almer, U. Lienert, Mater. Sci. Eng., A, 2005, 1-2, vol. 399, pp. 120-127.

    Article  Google Scholar 

  24. Y. Ivanyushenkov, K. Harkay, M. Borland, R. Dejus, J. Dooling, C. Doose, L. Emery, J. Fuerst, J. Gagliano, Q. Hasse, M. Kasa, P. Kenesei, V. Sajaev, K. Schroeder, N. Sereno, S. Shastri, Y. Shiroyanagi, D. Skiadopoulos, M. Smith, X. Sun, E. Trakhtenberg, A. Xiao, A. Zholents, and E. Gluskin: Phys. Rev. Accel. Beams, 2017.

  25. [25] S.D. Shastri, K. Fezzaa, A. Mashayekhi, W.K. Lee, P.B. Fernandez, P.L. Lee, J. Syncrotron Rad., 2002, vol. 9, pp. 317-322.

    Article  Google Scholar 

  26. J.H. Lee, C.C. Aydiner, J. Almer, J. Bernier, K.W. Chapman, P.J. Chupas, D. Haeffner, K. Kump, P.L. Lee, U. Lienert, A. Miceli, G. Vera, J. Syncrotron Rad., 2008, 5, vol. 15, pp. 477-488.

    Article  Google Scholar 

  27. [27] I.C. Noyan, J.B. Cohen, Residual Stress-Measurement by Diffraction and Interpretation, Springer-Verlag, New York., 1987.

    Google Scholar 

  28. A.C. Larson and R.B. Von Dreele: Los Alamos National Lab Report, Los Alamos, NM, 1986.

  29. [29] B.H. Toby, R.B. Von Dreele, J. App. Crys., 2013, vol. 46, pp. 544-549.

    Article  Google Scholar 

  30. B. Clausen: Los Alamos National Lab Report, Los Alamos, NM, 2004.

  31. [31] Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion: Metallic Elements and Alloys, Plenum Publishing Company, New York, 1975.

    Book  Google Scholar 

  32. [32] E.A. Owen, E.L. Yates, A.H. Sully, Proc. Phys. Soc, 1937, vol. 49, pp. 315–322.

    Article  Google Scholar 

  33. I.S. Smirnov, I.S. Monakhov, E.G. Novoselova, A.L. Udovskii, V.P. Kolotushkin, Metally, 2013, 1, vol. 2014, pp. 18-24.

    Google Scholar 

  34. P. Rangaswamy, C.P. Scherer, M.A.M. Bourke, Mater. Sci. Eng., A, 2001, #1-2, vol. 298, pp. 158-165.

    Article  Google Scholar 

  35. N. Singh, P.K. Sharma, Phys. Rev. B, 1971, 4, vol. 3, pp. 1141-&.

    Article  Google Scholar 

  36. [36] P.W. Hochanadel, T.J. Lienert, J.N. Martinez, R.J. Martinez, M.Q. Johnson, Weld Solidification Cracking in 304 to 304L Stainless Steel, in: T. Böllinghaus, J. Lippold, C.E. Cross (Eds.) Hot Cracking Phenomena in Welds III, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 145-160.

    Chapter  Google Scholar 

  37. WebElements: https://www.webelements.com/iron/physics.html, 6-13-18

  38. A.J. Beaudoin, P.A. Shade, J.C. Schuren, T.J. Turner, C. Woodward, J.V. Bernier, S.F. Li, D.M. Dimiduk, P. Kenesei, J.S. Park, Phys. Rev. B, 2017, 17, vol. 96,

    Google Scholar 

  39. [39] K. Chatterjee, A. Venkataraman, T. Garbaciak, J. Rotella, M.D. Sangid, A.J. Beaudoin, P. Kenesei, J.S. Park, A.L. Pilchak, Int. J. Solids Struct., 2016, vol. 94-95, pp. 35-49.

    Article  Google Scholar 

  40. [40] W. Tang, K.L. Halm, D.R. Trinkle, M.K.A. Koker, U. Lienert, P. Kenesei, A.J. Beaudoin, Acta Mater., 2015, vol. 101, pp. 71-79.

    Article  Google Scholar 

Download references

Acknowledgments

Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors wish to acknowledge and thank Mr. John Bernal of LANL and the APS 1-ID Beamline Staff, Ali Mashayekhi, and Roger Ranay, for their technical support at the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Brown.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 19, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, D.W., Losko, A., Carpenter, J.S. et al. Microstructure Development of 308L Stainless Steel During Additive Manufacturing. Metall Mater Trans A 50, 2538–2553 (2019). https://doi.org/10.1007/s11661-019-05169-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05169-1

Navigation