Skip to main content
Log in

Achieving Gradient Martensite Structure and Enhanced Mechanical Properties in a Metastable β Titanium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Gradient materials have been reported to have superior strength–ductility combinations. In this study, gradient α″ martensite were introduced along the radial direction of cylindrical Ti-10V-2Al-3Fe (Ti-1023) samples by torsional straining, which simultaneously improved strength and ductility. The torsional strain gradient produced martensite gradient with increasing density and decreasing thickness from center to surface. α″ martensite had parallel and V-shaped morphology, which not only divided coarse β grains into finer β blocks but also blocked dislocation slip. In addition, dislocation slip in the α″ martensite and β blocks led to grain refinement. The formation of geometrically necessary dislocation (GNDs) and the increasing shear stress required for martensitic transformation contributed to high strain hardening. An optimal gradient distribution exists in torsion-processed samples for the optimal mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Lu, Sci, 2014, vol. 345, pp. 1455-1456.

    Article  Google Scholar 

  2. X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, P Natl Acad Sci, 2014, vol. 111, pp. 7197-7201.

    Article  Google Scholar 

  3. R. Thevamaran, O. Lawal, S. Yazdi, S.-J. Jeon, J.-H. Lee, E.L. Thomas, Sci, 2016, vol. 354, pp. 312-316.

    Article  Google Scholar 

  4. I. Ovid’ko, R. Valiev, Y. Zhu, Prog Mater Sci, 94: 462 (2018)

    Google Scholar 

  5. X. Bian, F. Yuan, Y. Zhu, X. Wu, Mater Res Lett, 2017, 5, 501-507.

    Article  Google Scholar 

  6. X. Wu, Y. Zhu, Mater Res Lett, 2017, vol. 5, pp. 527-532.

    Article  Google Scholar 

  7. X. Wu, P. Jiang, L. Chen, J. Zhang, F. Yuan, Y. Zhu, Mater Res Lett, 2014, vol. 2, pp. 185-191.

    Article  Google Scholar 

  8. M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater Res Lett, 2016, vol. 4, pp. 145-151.

    Article  Google Scholar 

  9. A. Chen, J. Liu, H. Wang, J. Lu, Y.M. Wang, Mater Sci Eng: A,2016, vol. 667, pp. 179-188.

    Article  Google Scholar 

  10. X. Liu, H. Zhang, K. Lu, Sci, 2013, vol. 342, pp. 337-340.

    Article  Google Scholar 

  11. H. Wang, N. Tao, K. Lu, Scripta Mater, 2013, vol. 68, pp. 22-27.

    Article  Google Scholar 

  12. Z. Ma, J. Liu, G. Wang, H. Wang, Y. Wei, H. Gao, Sci Rep, 2016, vol. 6, pp. 22156.

    Article  Google Scholar 

  13. A. Chen, H. Ruan, J. Wang, H. Chan, Q. Wang, Q. Li, J. Lu, Acta Mater, 2011, vol. 59, pp. 3697-3709.

    Article  Google Scholar 

  14. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, Nat Commun, 2014, vol. 5, pp 3580.

    Article  Google Scholar 

  15. L. Lu, X. Chen, X. Huang, K. Lu, Sci, 2009, vol. 323, pp. 607-610.

    Article  Google Scholar 

  16. H. Wang, N. Tao, K. Lu, Acta Mater, 2012, vol. 60, pp. 4027-4040.

    Article  Google Scholar 

  17. C. Shao, P. Zhang, Y. Zhu, Z. Zhang, Y. Tian, Z. Zhang, Acta Mater, 2017, vol. 145, pp.413-428.

    Article  Google Scholar 

  18. Y. Kulkarni, R.J. Asaro, D. Farkas, Scripta Mater, 2009, vol. 60, pp. 532-535.

    Article  Google Scholar 

  19. J. Moering, X. Ma, G. Chen, P. Miao, G. Li, G. Qian, S. Mathaudhu, Y. Zhu, Scripta Mater, 2015, vol. 108, pp.100-103.

    Article  Google Scholar 

  20. A. Bhattacharjee, V. Varma, S. Kamat, A. Gogia, S. Bhargava, Metall Mater Trans A, 2006, vol. 37, pp. 1423-1433.

    Article  Google Scholar 

  21. A. Zafari, K. Xia, Mater Sci Eng: A, 2018, vol. 724, pp. 75-79.

    Article  Google Scholar 

  22. D. Qin, Y. Lu, D. Guo, L. Zheng, Q. Liu, L. Zhou, Mater Sci Eng: A, 2013, vol. 587, pp. 100-109.

    Article  Google Scholar 

  23. Z. Wyatt, S. Ankem, J Mater Sci, 2010, vol. 45, pp. 5022-5031.

    Article  Google Scholar 

  24. W. Xu, K. Kim, J. Das, M. Calin, J. Eckert, Scripta Mater, 2006, vol. 54, pp. 1943-1948.

    Article  Google Scholar 

  25. A. Paradkar, S. Kamat, A. Gogia, B. Kashyap, Metall Mater Trans A, 2008, vol. 39, pp. 551-558.

    Article  Google Scholar 

  26. C. Li, X. Wu, J. Chen, S. van der Zwaag, Mater Sci Eng: A,2011, vol. 528, pp. 5854-5860.

    Article  Google Scholar 

  27. F. Sun, J. Zhang, M. Marteleur, C. Brozek, E. Rauch, M. Veron, P. Vermaut, P. Jacques, F. Prima, Scripta Mater, 2015, vol. 94, pp. 17-20

    Article  Google Scholar 

  28. S. Sadeghpour, S. Abbasi, M. Morakabati, A. Kisko, L. Karjalainen, D. Porter, Scripta Mater, 2018, vol.145, pp. 104-108.

    Article  Google Scholar 

  29. X. Ma, F. Li, J. Cao, J. Li, Z. Sun, G. Zhu, S. Zhou, Mater Sci Eng: A, 2018, vol. 710, pp. 1-9.

    Article  Google Scholar 

  30. P. Barriobero-Vila, J. Gussone, K. Kelm, J. Haubrich, A. Stark, N. Schell, G. Requena, Mater Sci Eng: A, 2018, vol. 717, pp. 134-143.

    Article  Google Scholar 

  31. T. Yao, K. Du, H. Wang, Z. Huang, C. Li, L. Li, Y. Hao, R. Yang, H. Ye, Acta Mater, 2017, vol. 133, pp. 21-29.

    Article  Google Scholar 

  32. T. Fang, W. Li, N. Tao, K. Lu, Sci, 2011, 331, 1200177.

    Google Scholar 

  33. X. Ma, F. Li, J. Cao, J. Li, H. Chen, C. Zhao, Mater Design, 2017, vol. 114, pp. 271-281.

    Article  Google Scholar 

  34. N. Guo, X. Li, M. Xiao, R. Xin, L. Chai, B. Song, H. Yu, L. Li, Adv Eng Mater, 2016, vol. 18, pp. 1738-1746.

    Article  Google Scholar 

  35. C. Wang, F. Li, J. Li, J. Dong, F. Xue, Mater Sci Eng: A, 2014, vol. 598, pp. 7-14.

    Article  Google Scholar 

  36. L. Sun, K. Muszka, B. Wynne, E. Palmiere, Palmiere, Acta Mater, 2014, vol.66, pp. 132-149.

    Article  Google Scholar 

  37. N. Guo, Z. Zhang, Q. Dong, H. Yu, B. Song, L. Chai, C. Liu, Z. Yao, M.R. Daymond, Mater Design, 2018, vol. 143, pp.150-159.

    Article  Google Scholar 

  38. X. Ma, F. Li, J. Cao, Z. Sun, Q. Wan, J. Li, Z. Yuan, J Alloy Compd, 2017, vol. 703, pp. 298-308.

    Article  Google Scholar 

  39. Y. Estrin, A. Vinogradov, Acta mater, 2013, vol. 61, pp. 782-817.

    Article  Google Scholar 

  40. R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, I. Sabirov, Adv Eng Mater, 2006, vol. 8, pp. 1046-1056.

    Article  Google Scholar 

  41. W. Chen, Q. Sun, L. Xiao, J. Sun, Metall Mater Trans A, 2012, vol. 43, pp. 316-326.

    Article  Google Scholar 

  42. X. Ma, F. Li, X. Fang, Z. Li, Z. Sun, J. Hou, J. Cao, J Alloy Compd, 2019, vol. 784, pp.111-116.

    Article  Google Scholar 

  43. W. Xu, X. Wu, M. Calin, M. Stoica, J. Eckert, K. Xia, Scripta Mater, 60, 1012-1015 (2009)

    Article  Google Scholar 

  44. T. Duerig, J. Albrecht, D. Richter, P. Fischer, Acta Metall, 1982, vol. 30, pp. 2161-2172.

    Article  Google Scholar 

  45. Y. Chai, H. Kim, H. Hosoda, S. Miyazaki, Acta Mater, 2009, vol. 57, pp. 4054-4064.

    Article  Google Scholar 

  46. M. Kružík, A. Mielke, T. Roubíček, Meccanica, 2005, vol. 40, pp. 389-418.

    Article  Google Scholar 

  47. A. Zafari, X. Wei, W. Xu, K. Xia, Acta Mater, 2015, vol. 97, pp. 146-155.

    Article  Google Scholar 

  48. W. Xu, K. Kim, J. Das, M. Calin, B. Rellinghaus, J. Eckert, Appl Phys Lett, 2006, vol. 89, pp.031906.

    Article  Google Scholar 

  49. S. Sadeghpour, S. Abbasi, M. Morakabati, J Alloy Compd, 2015, vol. 650, pp.22-29.

    Article  Google Scholar 

  50. T. Grosdidier, M.-J. Philippe, Mater Sci Eng: A, 2000, vol. 291, pp. 218-223.

    Article  Google Scholar 

  51. D. Ping, Y. Yamabe-Mitarai, C. Cui, F. Yin, M. Choudhry, Appl Phys Lett, 2008, vol. 93, pp. 151911.

    Article  Google Scholar 

  52. C. Wei, Y. Shanshan, L. Ruolei, S. Qiaoyan, X. Lin, S. Jun, Rare Metal Mat Eng, 2015, vol. 44, pp. 1601-1606.

    Article  Google Scholar 

  53. Y. Ren, F. Wang, S. Wang, C. Tan, X. Yu, J. Jiang, H. Cai, Mater Sci Eng: A, 2013, vol. 562, pp. 137-143.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Scholarship Council (No. 201706290055, awarded to Xinkai Ma for two-year abroad study at the North Carolina State University); the National Natural Science Foundation of China (Grant Nos. 51275414, 51605387); the Fundamental Research Funds for the Central Universities with Grant No. 3102015BJ (II) ZS007; the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No.130-QP-2015); and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No. Z2018076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuguo Li or Yuntian Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 27, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, F., Sun, Z. et al. Achieving Gradient Martensite Structure and Enhanced Mechanical Properties in a Metastable β Titanium Alloy. Metall Mater Trans A 50, 2126–2138 (2019). https://doi.org/10.1007/s11661-019-05157-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05157-5

Navigation