Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2066–2080 | Cite as

Reinterpretation of the Mean Field Hypothesis in Analytical Models of Ostwald Ripening and Grain Growth

  • Paolo Emilio Di NunzioEmail author
Article
  • 118 Downloads

Abstract

A long right tail is a common feature of experimental quasi-stationary size distributions of particles and grains that is not explained by the classical theories based on the mean field hypothesis. In this work, it is shown that the “pairwise interaction” approach, here presented in a comprehensive exposition involving both Ostwald ripening and grain growth, is a valid alternative to classical mean field theories since it produces more realistic predictions of the distribution shapes. The new analytical models are based on the mean field concept but rely on a detailed physical description of the elementary interactions responsible for the exchange of matter. They are jointly reviewed and compared with the corresponding classical Lifshitz–Slyozov–Wagner and Hillert models. The interactions are treated as a sum of elementary and specific contributions rather than as a generalized exchange with the mean field. The framework is complemented by the introduction of the “interaction volume” in Ostwald ripening and of the “local grain boundary curvature” in grain growth which are both size-dependent and permit to represent more precisely the local physics of the exchanges. The excellent results obtained in reproducing the experiments without any ad hoc parameters suggest that the mean field hypothesis adopted in the classical theories to describe the environment of a growing particle or grain represents a too drastic approximation. Therefore, it is proposed to replace the classical mean field by a “local mean field,” i.e., the ensemble of actual mean environments interacting with any single element of a given size. This alternative assumption induces a higher growth rate for large particles or grains compared with their respective mean field theories, thus producing right-skewed asymptotic distributions. For particles at small volume fraction the stationary distribution resembles a lognormal function, whereas for grains in normal grain growth regime the Rayleigh distribution is found as solution.

Notes

Conflict of Interest

The author declares that he has no conflict of interest.

References

  1. 1.
    [1] P.E. Di Nunzio, Phil. Mag., 2018, vol. 98, pp. 388-407.CrossRefGoogle Scholar
  2. 2.
    [2] P.E. Di Nunzio, Phil. Mag., 2018, vol. 98, pp. 1674-1695.CrossRefGoogle Scholar
  3. 3.
    [3] P.E. Di Nunzio, Acta Mater., 2001, vol. 49, pp. 3635-3643.CrossRefGoogle Scholar
  4. 4.
    [4] P.E. Di Nunzio, Metall. Mater. Trans. A, 2002, vol. 33, pp. 3329-3337.Google Scholar
  5. 5.
    [5] P.E. Di Nunzio, Phys. Rev. B, 2003 vol. 68, pp. 115432.CrossRefGoogle Scholar
  6. 6.
    [6] O. Hunderi and N. Ryum, Mater. Sci. Forum, 1992, vol. 94-96, pp. 89-100.CrossRefGoogle Scholar
  7. 7.
    [7] M. Hillert, Acta Metall., 1965, vol. 13, pp. 227-238.CrossRefGoogle Scholar
  8. 8.
    [8] M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Acta Metall., 1984, vol. 32, pp. 783-792.CrossRefGoogle Scholar
  9. 9.
    [9] D.J. Srolovitz, M.P. Anderson, P. S. Sahni, and G.S. Grest, Acta Metall., 1984, vol. 32, pp. 793-802.CrossRefGoogle Scholar
  10. 10.
    [10] D.J. Srolovitz, M.P. Anderson, G.S. Grest, and P.S. Sahni, Acta Metall., 1984, vol. 32, pp. 1429-1438.CrossRefGoogle Scholar
  11. 11.
    [11] D. Raabe, Acta Mater., 2000, vol. 48, pp. 1617-1628.CrossRefGoogle Scholar
  12. 12.
    [12] D. Zöllner and P. Streitenberger, Scripta Mater., 2006, vol. 54, pp. 1697-1702.CrossRefGoogle Scholar
  13. 13.
    [13] D. Zöllner, Comput. Mater. Sci., 2011, vol. 50, pp. 2712-2719.CrossRefGoogle Scholar
  14. 14.
    M. Morháč and E. Morháčova: in Applications of Monte Carlo Method in Science and Engineering, S. Mordechai, ed., 2011.  https://doi.org/10.5772/1954.
  15. 15.
    S.K. Esche: in Applications of Monte Carlo Method in Science and Engineering, S. Mordechai (Ed.), 2011.  https://doi.org/10.5772/1954.
  16. 16.
    [16] H.L. Ding, Y.Z. He, L.F. Liu and W.J. Ding, J. Cryst. Growth, 2006, vol. 293, pp. 489-497.CrossRefGoogle Scholar
  17. 17.
    [17] S. Raghavan and S.S. Sahay, Mater. Sci. Eng. A, 2007, vol. 445-446, pp. 203-209.CrossRefGoogle Scholar
  18. 18.
    [18] C.E. Krill III and L.-Q. Chen, Acta Mater., 2002, vol. 50, pp. 3057-3073.Google Scholar
  19. 19.
    [19] S. Xiao and W. Hu, J. Cryst. Growth, 2006, vol. 286, pp. 512-517.CrossRefGoogle Scholar
  20. 20.
    [20] S.M. Foiles, Mater. Sci. Forum, 2012, vol. 715-716, pp. 599-604.CrossRefGoogle Scholar
  21. 21.
    J. Yin: Molecular Dynamics Study on the Grain Growth in Nanocrystalline Aluminum. Mechanical Engineering Masters Theses, Paper 4, 2016.Google Scholar
  22. 22.
    [22] T. Kato, T. Nagai, Y. Sasajima and J. Onuki, Materials Trans., 2010, vol. 51, pp. 664-669.CrossRefGoogle Scholar
  23. 23.
    [23] K. Brakke, Experimental Mathematics, 1992, vol. 1, pp. 141-165.CrossRefGoogle Scholar
  24. 24.
    [24] K. Marthinsen, O. Hunderi and N. Ryum, Acta Mater., 1996, vol. 44, pp. 1681-1689.CrossRefGoogle Scholar
  25. 25.
    [25] P.R. Rios and M.E. Glicksman, Acta Mater., 2006, vol. 54, pp. 5313-5321.CrossRefGoogle Scholar
  26. 26.
    L.A. Barrales Mora, G. Gottstein and L.S. Shvindlerman, Acta Mater., 2008, vol. 56, pp. 5915-5926.CrossRefGoogle Scholar
  27. 27.
    [27] P. Streitenberger and D. Zöllner, Acta Mater., 2011, vol. 59, pp. 4235-4243.CrossRefGoogle Scholar
  28. 28.
    [28] A.E. Johnson and P.W. Voorhees, Acta Mater., 2014, vol. 67, pp. 134-144.CrossRefGoogle Scholar
  29. 29.
    R. Darvishi Kamachali, A. Abbondandolo, K.F. Siburg and I. Steinbach, Acta Mater., 2015, vol. 90, pp. 252-258.CrossRefGoogle Scholar
  30. 30.
    [30] R.T. DeHoff, B.R. Patterson, C.A. Sahi and S. Chiu, Acta Mater., 2015, vol. 100, pp. 240-246.CrossRefGoogle Scholar
  31. 31.
    [31] P. Streitenberger and D. Zöllner, Acta Mater., 2015, vol. 88, pp. 334-345.CrossRefGoogle Scholar
  32. 32.
    [32] C. Mießen, M. Liesenjohann, L.A. Barrales-Mora, L.S. Shvindlerman and G. Gottstein, Acta Mater., 2015 vol. 99, pp. 39-48.CrossRefGoogle Scholar
  33. 33.
    [33] K. McReynolds, K.-A. Wu and P.W. Voorhees, Acta Mater., 2016, vol. 120, pp. 264-272.CrossRefGoogle Scholar
  34. 34.
    [34] J. Svoboda, P. Fratzl, G.A. Zickler and F.D. Fischer, Acta Mater., 2016, vol. 115, pp. 442-447.CrossRefGoogle Scholar
  35. 35.
    [35] V. Yadav and N. Moelans, Acta Mater., 2018, vol. 156, pp. 275-286.CrossRefGoogle Scholar
  36. 36.
    [36] V. Yadav and N. Moelans, Scripta Mater., 2018, vol. 142, pp. 148-152.CrossRefGoogle Scholar
  37. 37.
    J. Gao, M. Wei. L. Zhang, Y. Du, Z. Liu and B. Huang, Metall. Mater. Trans. A, 2018, vol. 49, pp 6442–6456.CrossRefGoogle Scholar
  38. 38.
    [38] I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-45.CrossRefGoogle Scholar
  39. 39.
    [39] C. Wagner, Z. Elektrochem., 1961, vol. 65, pp. 581-594.Google Scholar
  40. 40.
    [40] P.W. Voorhees and M.E. Glicksman, Acta Metall., 1984, vol. 32, pp. 2001-2011.CrossRefGoogle Scholar
  41. 41.
    [41] P.W. Voorhees and M.E. Glicksman, Acta Metall., 1984, vol. 32, pp. 2013-2030.CrossRefGoogle Scholar
  42. 42.
    [42] A. Baldan, J. Mater. Sci., 2002, vol. 37, pp. 2171-2202.CrossRefGoogle Scholar
  43. 43.
    [43] O. Hunderi and N. Ryum, Scand. J. Metall., 1963, vol. 10, pp. 238-240.Google Scholar
  44. 44.
    [44] A.J. Ardell, Acta Metall., 1972, vol. 20, pp. 61-71.CrossRefGoogle Scholar
  45. 45.
    [45] A.D. Brailsford and P. Wynblatt, Acta Metall., 1979, vol. 27, pp. 489-497.CrossRefGoogle Scholar
  46. 46.
    [46] C.K.L. Davies, P. Nash and R.N. Stevens, Acta Metall., 1980, vol. 28, pp. 179-189.CrossRefGoogle Scholar
  47. 47.
    [47] K. Tsumuraya and Y. Miyata, Acta Metall., 1983, vol. 31, pp. 437-452.CrossRefGoogle Scholar
  48. 48.
    [48] J.A. Marqusee and J. Ross, J. Chem. Phys., 1984, vol. 80, pp. 536-543.CrossRefGoogle Scholar
  49. 49.
    [49] L.C. Brown, Acta Metall., 1989, vol. 37, pp. 71-77.CrossRefGoogle Scholar
  50. 50.
    [50] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1986, vol. 34, pp. 2119-2128.CrossRefGoogle Scholar
  51. 51.
    [51] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1987, vol. 35, pp. 907-913.CrossRefGoogle Scholar
  52. 52.
    [52] Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall., 1987, vol. 35, pp. 915-922.CrossRefGoogle Scholar
  53. 53.
    A.J. Ardell: Proc. Int. Conf. “Phase transformations ’87”, G.W. Lorimer, ed., The Institute of Metals, 1988.Google Scholar
  54. 54.
    [54] S.P. Marsh and M.E. Glicksman, Acta Mater., 1996, vol. 44, pp. 3761-3771.CrossRefGoogle Scholar
  55. 55.
    [55] K. Kim and P.W. Voorhees, Acta Mater., 2018, vol. 152 pp. 327-337.CrossRefGoogle Scholar
  56. 56.
    [56] T. Philippe and P.W. Voorhees, Acta Mater., 2013, vol. 61, pp. 4237-4244.CrossRefGoogle Scholar
  57. 57.
    [57] F. Han, Materials, 2018, vol. 11, pp. 1936-1952.CrossRefGoogle Scholar
  58. 58.
    [58] S.G. Kim, Acta Mater., 2007, vol. 55, pp. 6513-6525.CrossRefGoogle Scholar
  59. 59.
    [59] R.N. Stevens and C.K.L. Davies, Scripta Mater., 2002, vol. 46 pp. 19-23.CrossRefGoogle Scholar
  60. 60.
    [60] R.D. Vengrenovich, Yu.V. Gudyma and S.V. Yarema, Scripta Mater., 2002, vol. 46, pp. 363-367.CrossRefGoogle Scholar
  61. 61.
    [61] C. Zener, J. Appl. Phys., 1949, vol. 20, pp. 950-953.CrossRefGoogle Scholar
  62. 62.
    [62] C. Wert and C. Zener, J. Appl. Phys., 1950, vol. 21, pp. 5-8.CrossRefGoogle Scholar
  63. 63.
    [63] P.W. Voorhees, Ann. Rev. Mater. Sci., 1992, vol. 22, pp. 197-215.CrossRefGoogle Scholar
  64. 64.
    [64] N.P. Louat, Acta Metall., 1974, vol. 22, pp. 721-724.CrossRefGoogle Scholar
  65. 65.
    [65] J. Svoboda and F.D. Fischer, Acta Mater., 2014, vol. 79, pp. 304-314.CrossRefGoogle Scholar
  66. 66.
    [66] D.J. Rowenhorst, J.P. Kuang, K. Thornton and P.W. Voorhees, Acta Mater., 2006, vol. 54, pp. 2027-2039.CrossRefGoogle Scholar
  67. 67.
    H. Hougardy and Y. Lan: Modelling of Particle Growth and Application to the Carbide Evolution in Special Steels for High Temperature Service, Final Report EUR 18633 EN, Luxembourg, 1999.Google Scholar
  68. 68.
    [68] T. Werz, M. Baumann, U. Wolfram and C.E. Krill III, Mater. Characterization, 2014, vol. 90, pp. 185-195.CrossRefGoogle Scholar
  69. 69.
    [69] P. Feltham, Acta Metall., 1957, vol. 5, pp. 97-105.CrossRefGoogle Scholar
  70. 70.
    [70] H. Hu, Can. Metall. Q., 1974, vol. 13, pp. 275-286.CrossRefGoogle Scholar
  71. 71.
    [71] J. Zhang, Y. Zhang, W. Ludwig, D. Rowenhorst and H.F. Poulsen, Acta Mater., 2018, vol. 156, pp. 76-85.CrossRefGoogle Scholar
  72. 72.
    [72] S.K. Kurtz and F.M.A. Carpay, J. Appl. Phys., 1980, vol. 51, pp. 5725-5744.CrossRefGoogle Scholar
  73. 73.
    [73] S.K. Kurtz and F.M.A. Carpay, J. Appl. Phys., 1980, vol. 51, pp. 5745-5754.CrossRefGoogle Scholar
  74. 74.
    [74] C.S. Pande, Acta Metall., 1987, vol. 35, pp. 2671-2678.CrossRefGoogle Scholar
  75. 75.
    [75] J. Svoboda and F.D. Fischer, Acta Mater., 2007, vol. 55, pp. 4467-4474.CrossRefGoogle Scholar
  76. 76.
    S. Protasova and V. Sursaeva: in Proceedings of the 1st Joint International Conference on Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds., Springer, Berlin, 2001, pp. 557–62.Google Scholar
  77. 77.
    [77] J. Jeppsson, J. Ågren and M. Hillert, Acta Mater., 2008, vol. 56, pp. 5188-5201.CrossRefGoogle Scholar
  78. 78.
    [78] K.G. Wang, M.E. Glicksman and C. Lou, Phys. Rev. E, 2006, vol. 73, pp. 061502.CrossRefGoogle Scholar
  79. 79.
    [79] M. Marder, Phys. Rev. A, 1987, vol. 36, pp. 858-874.CrossRefGoogle Scholar
  80. 80.
    [80] V.A. Snyder, J. Alkemper and P.W. Voorhees, Acta Mater., 2000, vol. 48, pp. 2689-2701.CrossRefGoogle Scholar
  81. 81.
    [81] V.A. Snyder, J. Alkemper and P.W. Voorhees, Acta Mater., 2001, vol. 49, pp. 699-709.CrossRefGoogle Scholar
  82. 82.
    [82] Y. Tomokiyo, K. Yahiro, S. Matsumura, K. Oki and T. Guchi, Effect of spatial correlations of particles on Ostwald ripening, in S. Komura, H. Furukawa (eds.) Dynamics of ordering processes in condensed matter, Springer, Boston MA (1988).Google Scholar
  83. 83.
    [83] O. Hunderi, J. Friis, K. Marthinsen and N. Ryum, Scripta Mater., 2006, vol. 55, pp. 939-942.CrossRefGoogle Scholar
  84. 84.
    [84] F.S.L. Ng, Acta Mater., 2016, vol. 120, pp. 453-462.CrossRefGoogle Scholar
  85. 85.
    [85] F.D. Fischer, J. Svoboda, E. Gamsjäger and E.R. Oberaigner, Acta Mater., 2008, vol. 56, pp. 5395-5400.CrossRefGoogle Scholar
  86. 86.
    [86] D.E. Kile, D.D. Eberl, A.R. Hoch and M.M. Reddy, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 2937-2950.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.RINA Consulting - Centro Sviluppo Materiali S.p.A.RomeItaly

Personalised recommendations