Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2259–2271 | Cite as

Investigation of Peritectic Behavior of Steel Using a Thermal Analysis Technique

  • Sunday AbrahamEmail author
  • Rick Bodnar
  • Johan Lonnqvist
  • Fatemeh Shahbazian
  • Anders Lagerstedt
  • Magnus Andersson


During solidification, the peritectic reaction can occur in a wide range of materials, including ferrous and non-ferrous alloys. The kinetic and thermodynamic principles that govern the peritectic reaction in regard to solute diffusion and phase transformation are well understood, and the negative impact that the peritectic reaction has on the surface quality of as-cast steel products is well documented. In ferroalloys, the peritectic reaction occurs between the hypoperitectic (0.09 pct C) and hyperperitectic (0.53 pct C) regions of the iron-carbon phase diagram. Beside the carbon content, the magnitude of the peritectic reaction in a given steel is affected by the contents of other solute elements. However, our understanding of the effect of all dissolved elements on the peritectic reaction is still evolving. There are over a dozen equations that have been proposed for predicting the peritectic nature of steels. Some of these equations were developed for application to specific groups of steels, chemistries, and casting conditions. In this paper, the predictive power of four peritectic equations is compared to the results from thermal analysis experiments conducted on steels with varying concentrations of dissolved elements. Based on the thermal analysis results, an equation is proposed for calculating the latent heat of the peritectic reaction for a given solute element.



The authors would like to thank Steve Hansen and other SSAB senior managers for supporting this project. Special thanks to Miles Haberkorn and Josh Cottrell for their assistance in this work.


  1. 1.
    H. W. Kerr and W. Kurz: Int. Mater. Rev., 1996, vol. 41, no. 4, pp. 132-64.CrossRefGoogle Scholar
  2. 2.
    C. Bernhard: Berg und Huettenmännische Monatshefte, 2004, vol. 149, pp. 90-95.Google Scholar
  3. 3.
    M. M. Wolf: Ironmaking and Steelmaking, 1986, vol. 13, pp. 248-57.Google Scholar
  4. 4.
    M. Wolf and W. Kurz: Metall. Trans. B, 1981, vol. 12B, pp. 85-93.CrossRefGoogle Scholar
  5. 5.
    D. H. StJohn: Acta Metall. Mater., 1990, vol. 38, no. 4, pp. 631-36.CrossRefGoogle Scholar
  6. 6.
    D. H. StJohn and L. M. Hogan: Acta Metall., 1987, vol. 35, no. 1, pp. 171-74.CrossRefGoogle Scholar
  7. 7.
    H. Fredriksson and T. Nylén: Met. Sci., 1982, vol. 16, pp. 283-294.CrossRefGoogle Scholar
  8. 8.
    D. R. Uhlmann and G. A. Chadwick: Acta Metall., 1961, vol. 9, pp. 835-40.CrossRefGoogle Scholar
  9. 9.
    DH St. John, LM Hogan (1982) J. Mater. Sci. 17:2413-18.CrossRefGoogle Scholar
  10. 10.
    N. J. McDonald and S. Sridhar: Metall. and Mater. Trans. A, 2003, vol. 34A, pp. 1931-40.CrossRefGoogle Scholar
  11. 11.
    Y. K. Chuang, D. Reinishch, and K. Schwardtfeger: Metall. Trans. A, 1975, vol. 6A, pp. 235-8.CrossRefGoogle Scholar
  12. 12.
    M. M. Wolf: Steelmaking Conference Proceedings, ISS-AIME, 1998, pp. 53-61.Google Scholar
  13. 13.
    H. W. Kerr, J. Cisse, and G. F. Bolling: Acta Metall., 1974, pp. 677–86.Google Scholar
  14. 14.
    D. M. Stefanescu: ISIJ Int., 2006, vol. 46, no. 6, pp. 786-94.CrossRefGoogle Scholar
  15. 15.
    J. J. R. Mondragόn, M. H. Trejo, M. J. C. Román and H. Solíst: ISIJ Int., 2008, vol. 48, no. 4, pp. 454-60.CrossRefGoogle Scholar
  16. 16.
    A. D. Pitts-Duncan: Particle Engulfment and Pushing by Peritectic Systems, Thesis, 2006, The University of Alabama, Tuscaloosa, U.S.A.Google Scholar
  17. 17.
    A. Grill and J. K. Brimacombe: Ironmaking and Steelmaking, 1976, vol. 2, pp. 76-9.Google Scholar
  18. 18.
    T. Emi and H. Fredriksson: Mater. Sci. and Eng. A, 2005, vol. 413/414, pp. 2-9.CrossRefGoogle Scholar
  19. 19.
    J. S. Lee, S. G. Kim, W. T. Kim and T. Suzuki: ISIJ Int., 1999, vol. 39, no 7, pp. 730-6.CrossRefGoogle Scholar
  20. 20.
    J. Tiaden: J. Cryst. Growth, 1999, vol. 198/199, pp. 1275-80.Google Scholar
  21. 21.
    M. El-Bealy and H. Fredriksson: Metall. and Mater. Trans. B, 1996, vol. 27B, pp. 999-1014.CrossRefGoogle Scholar
  22. 22.
    H. Nassar and H. Fredricksson: Metall. and Mater. Trans. A, 2010, vol. 41A, pp. 2776-2783.CrossRefGoogle Scholar
  23. 23.
    J.E. Rodriguez and D.M. Matson: Acta Mater., 2017, vol. 129, pp. 408-414.CrossRefGoogle Scholar
  24. 24.
    H. Shibata, Y. Arai, M. Suzuki, and T. Emi: Metall. and Mater. Trans. B, 2000, vol. 31B, pp. 981-91.CrossRefGoogle Scholar
  25. 25.
    K. Matsuura, H. Maruyama, Y. Itoh, M. Kudoh, and K. Ishii: ISIJ Int., 1995, vol. 35, no. 2, pp. 183-7.CrossRefGoogle Scholar
  26. 26.
    K. Matsuura, Y. Itoh, and T. Narita: ISIJ Int., 1993, vol. 33, No. 35, pp. 583-7.CrossRefGoogle Scholar
  27. 27.
    H. Yasuda, I. Ohnaka, Y. Matsunaga, and Y. Shiohara: J. Cryst. Growth, 1996, vol. 158, pp. 128-35.CrossRefGoogle Scholar
  28. 28.
    S. Moon: The Peritectic Phase Transition and Continuous Casting Practice, Thesis, 2015, University of Wollongong, Wollongong, Australia.Google Scholar
  29. 29.
    K. Hechu, C. Slater, B. Santillana and S. Sridhar: The 2nd International Symposium on the Recent Developments in Plate Steels, AIST, 2018, pp. 33-42.Google Scholar
  30. 30.
    J. Konishi: Modeling of The Formation of Longitudinal Facial Cracks in Continuous Casting of Steel Slabs, Thesis, 1996, University of British Columbia, Vancouver, Canada.Google Scholar
  31. 31.
    K. Ishida, H. Fukai, H. Ohotani, and K. Nishizawa: J. Iron Steel Inst. Jpn, 1985, vol. 71, p. S198Google Scholar
  32. 32.
    K. Yasumoro, T. Nagamichi, Y. Maehara, and K. Gunji: J. Iron Steel Inst. Jpn, 1987, vol.73, pp. 1738-1745.CrossRefGoogle Scholar
  33. 33.
    A. S. Normanton, V. Ludlow, A. W. Smith, A. Gotti, M. Thiemann, S. Landa, and J. Wans: Improving Surface Quality of ContinuTech. Steel Res., EUR21340 EN, 2005.Google Scholar
  34. 34.
    A. Kagawa and T. Okamoto: Mater. Sci. Technol., 1986, vol. 2, pp. 998-1008.CrossRefGoogle Scholar
  35. 35.
    K.E. Blazek, O. Lanzi III, P. L. Gano, and D. L. Kellogg: AIST Trans. Iron Steel Technol. 2008, pp. 80-85.Google Scholar
  36. 36.
    S. Abraham (2016) AIST Trans. Iron Steel Technol. 13(1):176-87.Google Scholar
  37. 37.
    B. Carlsson and B. Callmer: A Guide to the Solidification of Steels, Ljungberg Tryckeri AB, Södertälje, Jernkontoret, Sweden, 1977, pp. 13-162.Google Scholar
  38. 38.
    P. Presoly, R. Pierer, and C. Bernhard: Metall. and Mater. Trans. A, 2013, vol. 44A, pp. 5377-88.CrossRefGoogle Scholar
  39. 39.
    B. K. Dhindaw, T. Antonsson, J. Tinoco, and H. Fredriksson: Metall. and Mater. Trans. A, 2004, vol. 35A, pp. 2869-79.CrossRefGoogle Scholar
  40. 40.
    S. Griesser, C. Bernhard and R. Dippenaar: Acta Mater., 2014, vol. 81, pp. 111-20.CrossRefGoogle Scholar
  41. 41.
    G. S. Reddy and J. A. Sekhar: Acta Metall., 1989, vol. 37, no.5, pp. 1509-1519.CrossRefGoogle Scholar
  42. 42.
    E.S. Szekeres: Brimacombe Continuous Casting Course, 2000, vol. II, pp. P1-5.Google Scholar
  43. 43.
    C. G. Levi and R. Mehrabian: Met. Trans. A, 1982, vol. 13A, pp. 221-234.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Sunday Abraham
    • 1
    Email author
  • Rick Bodnar
    • 1
  • Johan Lonnqvist
    • 2
  • Fatemeh Shahbazian
    • 2
  • Anders Lagerstedt
    • 3
  • Magnus Andersson
    • 3
  1. 1.SSAB AmericasMuscatineUSA
  2. 2.SwerimKistaSweden
  3. 3.SSAB Oxelösund ABOxelösundSweden

Personalised recommendations