Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2114–2125 | Cite as

Inhomogeneous Warm Deformation Behavior and Its Effect on the Deformability of an Fe-6.5PctSi Alloy with Ce Doping

  • Xuan Yu
  • Guangtao Lin
  • Zhihao Zhang
  • Jianxin XieEmail author
Article
  • 89 Downloads

Abstract

The inhomogeneous deformation behavior generated by deformability differences between soft and hard phases is a critical factor that influences the deformation and processability of materials. For Fe-6.5pctSi alloys with coexisting disordered and ordered phases, this work studied warm (300 °C to 500 °C) tensile deformation property differences and mechanisms for non-Ce-doped and 0.02 wt pct Ce-doped alloys. The warm deformation behavior was analyzed according to the stress and strain partitioning of the two-phase alloy by establishing a two-phase (A2 disordered phase + B2/D03 ordered phase) system model based on the structural characteristics of the alloy. The results show that the plastic deformation is mainly attributed to the A2 disordered phase, and the existence of a hard and ordered phase leads to local and inhomogeneous deformation behavior, which decreases the uniform plastic elongation and deformability of the alloy. Ce doping improves the warm deformation homogeneity and deformability by reducing the size and amount of the B2 ordered phase, which improves the warm rolling deformation and increases subsequent cold rolling deformability. Cold rolling with a total thickness reduction greater than 63 pct was achieved after the Ce-doped hot-rolled specimen with a 2 mm thickness was warm rolled to an 82.5 pct reduction, and the warm-rolled and cold-rolled sheets had good surface integrity and no obvious cracking.

Notes

Acknowledgment

This work was supported by the National Basic Research Program of China (973 Program) [Grant No. 2011CB606300].

References

  1. 1.
    K.I. Arai and K. Ishiyama: J. Magn. Magn. Mater., 1994, vol. 133, pp. 233-237.CrossRefGoogle Scholar
  2. 2.
    Y. Oda, M. Kohno and A. Honda: J. Magn. Magn. Mater., 2008, vol. 320, pp. 2430-2435.CrossRefGoogle Scholar
  3. 3.
    J. E. Wittig and G. Frommeyer: Metall. Mat. Trans. A, 2008, vol. 39, pp. 252-265.CrossRefGoogle Scholar
  4. 4.
    H. Haiji, K. Okada, T. Hiratani, M. Abe and M. Ninomiya: J. Magn. Magn. Mater., 1996, vol. 160, pp. 109-114.CrossRefGoogle Scholar
  5. 5.
    Y. F. Liang, J. P. Lin, F. Ye, Y. J. Li, Y. L. Wang and G. L. Chen: J. Alloy. Compd., 2010, vol. 504, pp. S476-S479.CrossRefGoogle Scholar
  6. 6.
    H.-D. Fu, Z.-H. Zhang, H.-J. Pan, Y.-K. Mo and J.-X. Xie: Int. J. Min. Met. Mater., 2013, vol. 20, pp. 535-540.CrossRefGoogle Scholar
  7. 7.
    Y.F. Liang, F. Ye, J.P. Lin, Y.L. Wang, L.Q. Zhang and G.L. Chen: Sci. China Technol. Sci., 2010, vol. 53, pp. 1008-1011.CrossRefGoogle Scholar
  8. 8.
    H. Li, Y.F. Liang, W. Yang, F. Ye, J.P. Lin and J.X. Xie: Mater. Sci. Eng. A, 2015, vol. 628, pp. 262-268.CrossRefGoogle Scholar
  9. 9.
    J. Xie, H. Fu, Z. Zhang and Y. Jiang: Intermetallics., 2012, vol. 23, pp. 20-26.CrossRefGoogle Scholar
  10. 10.
    Y. F. Liang, J. W. Ge, X. S. Fang, F. Ye and J. P. Lin: Mater. Sci. Eng. A, 2013, vol. 570, pp. 8-12.CrossRefGoogle Scholar
  11. 11.
    H.Z. Li, H.T. Liu, X.L. Wang, G.M. Cao, C.G. Li, Z.Y. Liu and G.D. Wang: Mater. Lett., 2016, vol. 165, pp. 5-8.CrossRefGoogle Scholar
  12. 12.
    H.Z. Li, H.T. Liu, Z.Y. Liu and G.D. Wang: Mater. Charact., 2015, vol. 103, pp. 101-106.CrossRefGoogle Scholar
  13. 13.
    X. Yu, Z. Zhang and J. Xie: Mater. Lett., 2016, vol. 184, pp. 294-297.CrossRefGoogle Scholar
  14. 14.
    X. Yu, Z. Zhang, and J. Xie: Acta Metall. Sin., 2017, vol. 53, pp. 927–36.Google Scholar
  15. 15.
    A. Iza-Mendia, A. Piñol-Juez, J.J. Urcola and I. Gutiérrez: Metall. Mat. Trans. A, 1998, vol. 29, pp. 2975-2986.CrossRefGoogle Scholar
  16. 16.
    M. Ohata, M. Suzuki, A. Ui and F. Minami: Eng. Fract. Mech., 2010, vol. 77, pp. 277-284.CrossRefGoogle Scholar
  17. 17.
    Z. Ji, H. Yang and H. Li: Mater. Design., 2015, vol. 87, pp. 171-180.CrossRefGoogle Scholar
  18. 18.
    K. Cho and J. Gurland: Metall. Trans. A, 1988, vol. 19, pp. 2027-2040.CrossRefGoogle Scholar
  19. 19.
    H. Okamoto: Desk handbook: phase diagrams for binary alloys, ASM International, Materials Park, OH, 1993, pp.380-381.Google Scholar
  20. 20.
    K. Raviprasad and K. Chattopadhyay: Acta Metall. Mater., 1993, vol. 41, pp. 609-624.CrossRefGoogle Scholar
  21. 21.
    W. Mao and P. Yang: Sci. China Technol. Sci., 2012, vol. 55, pp. 2920-2925.CrossRefGoogle Scholar
  22. 22.
    X. Wang, W. Zhang, Z. Liu, H. Li and G. Wang: Mater. Charact., 2016, vol. 122, pp. 206-214.CrossRefGoogle Scholar
  23. 23.
    X. Wang, H. Li, Z. Liu, H. Liu, G. Wang, Z. Luo, F. Zhan, S. Chen and L. Lyu: Mater. Charact., 2016, vol. 111, pp. 67-74.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xuan Yu
    • 1
  • Guangtao Lin
    • 2
  • Zhihao Zhang
    • 2
  • Jianxin Xie
    • 1
    • 2
    Email author
  1. 1.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.Institute for Advanced Materials and Technology, University of Science and Technology BeijingBeijingP.R. China

Personalised recommendations