Skip to main content
Log in

Resistance Spot Welding Metallurgy of Thin Sheets of Zinc-Coated Interstitial-Free Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The extensive use of galvanized interstitial-free (IF) steels in the automotive industry makes their resistance spot welding (RSW) metallurgy important. In this study, the relationships between microstructure, macrostructure, mechanical performance, and failure mode of resistance spot welds of galvanized IF steels were investigated. In order to characterize the macro- or microstructure, geometry, mechanical performance, and failure mode of the welds, stereographic microscopy, optical microscopy, scanning electron microscopy (SEM), and microhardness techniques were used. The results showed that the heat-affected zone (HAZ) includes ferrite grains that were elongated in the direction of heat transfer from the weld pool boundary to the base metal (BM). In addition, it was found that the nugget microstructure contains lath martensite, bainite, and different ferrite morphologies. Increasing the amount of heat input led to a decrease in martensite phase content in the weld nugget (WN) microstructure. Microhardness test results showed that the hardness of the WN is higher than the HAZ and BM. In the tensile shear tests, interfacial fracture and pullout fracture followed by BM sheet tearing were observed. It was seen that a WN with size \( 4 \times \sqrt t \) (t = sheet thickness) does not lead to pullout fracture. Finally, it was found that due to lower electrical resistivity of the steel in contrast to advanced high-strength steels, higher welding currents and longer welding times should be used in order to ensure the formation of large enough WNs and, thus, the satisfactory mechanical performance of the resistance spot welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1. G.P. Sing, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1961–74.

    Article  Google Scholar 

  2. 2. L.Q. Guo, D. Liang, Y. Bai, X.L. Miao, L.J. Qiao, and A.A.Volinsky: Corrosion, 2014, vol. 70, pp. 1024–30.

    Article  Google Scholar 

  3. 3. P. Murkute, J. Ramkumar, and K. Mondal: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2878–88.

    Article  Google Scholar 

  4. 4. W.R. Osorio, L.C. Peixoto, and A. Garcia: J. Mater. Corros., 2010, vol. 61, pp. 407–11.

    Google Scholar 

  5. 5. R. Rana, S.B. Singh, and O.N. Mohanty: Corros. Eng. Sci. Technol., 2011, vol. 46, pp. 517–20.

    Article  Google Scholar 

  6. 6. G. Chakraborty, T.K. Pal, and M.Shome: J. Mater. Sci. Technol., 2011, vol. 27, pp. 382–86.

    Article  Google Scholar 

  7. 7. A. Bak and S. Gündüz: J. Automob. Eng., 2010, vol. 224, pp. 29–40.

    Article  Google Scholar 

  8. 8. M. Takahashi: ISIJ Int., 2015, vol. 55, pp. 79–88.

    Article  Google Scholar 

  9. 9. S. Hoile: Mater. Sci. Technol.., 2000, vol. 16, pp. 1079–93.

    Article  Google Scholar 

  10. 10. M.R.A. Shawon, F. Gulshan, and A.S.W. Kurny: J. Inst. Eng. India Ser. D, 2015, vol. 96, pp. 29–36.

    Article  Google Scholar 

  11. A.C. Baldim, S.C. da Costa, and T.C.S. Aguiar: Weld. Int., 2017, vol. 31, pp. 259–67.

    Article  Google Scholar 

  12. 12. M. Goodarzi, S.P.H. Marashi, and M. Pouranvari: J. Mater. Process. Technol., 2009, vol. 209, pp. 4379–84.

    Article  Google Scholar 

  13. H.K.D.H. Bhadeshia: Phase Transformations during Spot Welding of Interstitial-Free Steel. Proc. Int. Conf. on Interstitial-Free Steels, Jamshedpur, 2010, pp. 1–11.

  14. 14. M. Pouranvari and S.P.H. Marashi: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 361–403.

    Article  Google Scholar 

  15. 15. R. Ashiri, M.A. Haque, C.-W. Ji, H.R. Salimijazi, and Y.-D. Park: Scripta Mater., 2015, vol. 109, pp. 6–10.

    Article  Google Scholar 

  16. 16. R. Ashiri, M. Shamanian, H.R. Salimijazi, M.A. Haque, J.-H. Bae, C.-W. Ji, K.-G. Chin, and Y.-D. Park: Scripta Mater., 2016, vol. 114, pp. 41–47.

    Article  Google Scholar 

  17. 17. S. Rajakumar and V. Balasubramanian: J. Adv. Microsc. Res., 2015, vol. 10, pp. 146–54.

    Article  Google Scholar 

  18. P. Howe and S.C. Kelley: Report No. 880280, SAE International, 1988.

  19. M.I. Khan: Master’s Thesis, University of Waterloo, Waterloo, 2007.

  20. 20. S.S. Rao, R. Chhibber, K.S. Arora, and M. Shome: J. Mater. Process. Technol., 2017, vol. 246, pp. 252–61.

    Article  Google Scholar 

  21. 21. M. Pouranvari, H.R. Asgari, S.M. Mosavizadeh, P.H. Marashi, and M. Goodarzi: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 217–25.

    Article  Google Scholar 

  22. F. Mirzaei, H. Ghorbani, and F. Kolahan: Int. J. Adv. Manuf. Technol., 2017, vol. 92, pp. 1–13.

    Article  Google Scholar 

  23. 23. D. Kianersi, A. Mostafaei, and J. Mohammadi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4423–42.

    Article  Google Scholar 

  24. 24. D.S. Safanama, S.P.H. Marashi, and M. Pouranvari: Sci. Technol. Weld. Join., 2012, vol. 17, pp. 288–94.

    Article  Google Scholar 

  25. 25. D.J. Radakovic and M. Tumuluru: Weld. J., 2012, vol. 91, pp. 8–15.

    Google Scholar 

  26. 26. M. Tumuluru: Weld. J., 2007, vol. 86, pp. 161–69.

    Google Scholar 

  27. 27. R. Ashiri, S.P.H. Marashi, and Y.-D. Park: Weld. J., 2018, vol. 97, pp. 157–69.

    Article  Google Scholar 

  28. 28. M. Pouranvari and S.P.H. Marashi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8337–43.

    Article  Google Scholar 

  29. 29. D.J. Radakovic and M. Tumuluru: Weld. J., 2008, vol. 87, pp. 96–105.

    Google Scholar 

  30. Standard Test Method for Analysis of Carbon and Low-Alloy Steel by Spark Atomic Emission Spectrometry. ASTM E415-14, ASTM International, West Conshohocken, 2014.

  31. Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials. ANSI/AWS/SAE/D8.9M-2012, American Welding Society, Miami, 2012.

  32. Standard Test Methods for Determining Average Grain Size,” ASTM E112-13, ASTM International, West Conshohocken, 2013.

  33. G. Krauss: Am. Soc. Met., 1980, p. 291.

  34. ASM Handbook Committee: Metals Handbook: Heat Treating, ASM International, Metals Park, 1991

    Google Scholar 

  35. 35. J.Z. Chen and D.F. Farson: J. Mater. Process. Technol., 2006, vol. 178, pp. 251–58.

    Article  Google Scholar 

  36. 36. E. Bayraktar, D. Kaplan, L. Devillers, and J.P. Chevalier: J. Mater. Process. Technol., 2007, vol. 189, pp. 114–25.

    Article  Google Scholar 

  37. 37. M. Pouranvari, A. Abedi, P. Marashi, and M. Goodarzi: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 39–43.

    Article  Google Scholar 

  38. 38. P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, and M. Goodarzi: Mater. Sci. Eng. A, 2008, vol. 480, pp. 175–80.

    Article  Google Scholar 

  39. 39. M. Pouranvari and S.P.H. Marashi: Mater. Des., 2010, vol. 31, pp. 3647–52.

    Article  Google Scholar 

  40. 40. M. Pouranvari and P. Marashi: Metalurgija, 2009, vol. 15, pp. 149–57.

    Google Scholar 

  41. 41. H.K.D.H. Bhadeshia and J.W. Cheristian: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 767–97.

    Article  Google Scholar 

  42. Y. Ohmori, H. Ohtsubo, Y.C. Jung, S. Okaguchi, and H. Ohtani: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1981–89.

    Article  Google Scholar 

  43. 43. D. Phelan and R. Dippenaar: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3701–06.

    Article  Google Scholar 

  44. 44. H.I. Aaronson, G. Spanos, R.A. Masamura, R.G. Vardiman, D.W. Moon, E.S.K. Menon, and M.G. Hall: Mater. Sci. Eng. B, 1995, vol. 32, pp. 107–23

    Article  Google Scholar 

  45. 45. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructures and Properties, 3rd ed., Butterworth-Heinemann, Elsevier, Oxford, United Kingdom, 2006.

    Google Scholar 

  46. 46. S. Kou: Welding Metallurgy, 2nd ed., Wiley-Interscience, Hoboken, NJ, 2003.

    Google Scholar 

  47. 47. M. Tamizi, M. Pouranvari, and M. Movahedi: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 327–35.

    Article  Google Scholar 

  48. 48. I. Hajiannia, M. Shamanian, M. Atapour, E. Ghassemali, and R. Ashiri: Cog. Eng., 2018, vol. 5, pp. 1–13.

    Google Scholar 

  49. 49. G. Mukhopadhyay, S. Bhattacharya, and K.K. Ray: J. Mater. Process. Technol., 2009, vol. 209, pp. 1995–2007.

    Article  Google Scholar 

  50. 50. R. Ashiri, H. Mostaan, and Y.-D. Park: Metall. Mater. Trans. A, 2018, vol. 49A, 6161-72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masoud Atapour or Rouholah Ashiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 6, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi Beni, S., Atapour, M., Salmani, M.R. et al. Resistance Spot Welding Metallurgy of Thin Sheets of Zinc-Coated Interstitial-Free Steel. Metall Mater Trans A 50, 2218–2234 (2019). https://doi.org/10.1007/s11661-019-05146-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05146-8

Navigation