Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2218–2234 | Cite as

Resistance Spot Welding Metallurgy of Thin Sheets of Zinc-Coated Interstitial-Free Steel

  • Sajad Salimi Beni
  • Masoud AtapourEmail author
  • Mohammad Reza Salmani
  • Rouholah AshiriEmail author


The extensive use of galvanized interstitial-free (IF) steels in the automotive industry makes their resistance spot welding (RSW) metallurgy important. In this study, the relationships between microstructure, macrostructure, mechanical performance, and failure mode of resistance spot welds of galvanized IF steels were investigated. In order to characterize the macro- or microstructure, geometry, mechanical performance, and failure mode of the welds, stereographic microscopy, optical microscopy, scanning electron microscopy (SEM), and microhardness techniques were used. The results showed that the heat-affected zone (HAZ) includes ferrite grains that were elongated in the direction of heat transfer from the weld pool boundary to the base metal (BM). In addition, it was found that the nugget microstructure contains lath martensite, bainite, and different ferrite morphologies. Increasing the amount of heat input led to a decrease in martensite phase content in the weld nugget (WN) microstructure. Microhardness test results showed that the hardness of the WN is higher than the HAZ and BM. In the tensile shear tests, interfacial fracture and pullout fracture followed by BM sheet tearing were observed. It was seen that a WN with size \( 4 \times \sqrt t \) (t = sheet thickness) does not lead to pullout fracture. Finally, it was found that due to lower electrical resistivity of the steel in contrast to advanced high-strength steels, higher welding currents and longer welding times should be used in order to ensure the formation of large enough WNs and, thus, the satisfactory mechanical performance of the resistance spot welds.



  1. 1.
    1. G.P. Sing, A.P. Moon, S. Sengupta, G. Deo, S. Sangal, and K. Mondal: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1961–74.CrossRefGoogle Scholar
  2. 2.
    2. L.Q. Guo, D. Liang, Y. Bai, X.L. Miao, L.J. Qiao, and A.A.Volinsky: Corrosion, 2014, vol. 70, pp. 1024–30.CrossRefGoogle Scholar
  3. 3.
    3. P. Murkute, J. Ramkumar, and K. Mondal: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2878–88.CrossRefGoogle Scholar
  4. 4.
    4. W.R. Osorio, L.C. Peixoto, and A. Garcia: J. Mater. Corros., 2010, vol. 61, pp. 407–11.Google Scholar
  5. 5.
    5. R. Rana, S.B. Singh, and O.N. Mohanty: Corros. Eng. Sci. Technol., 2011, vol. 46, pp. 517–20.CrossRefGoogle Scholar
  6. 6.
    6. G. Chakraborty, T.K. Pal, and M.Shome: J. Mater. Sci. Technol., 2011, vol. 27, pp. 382–86.CrossRefGoogle Scholar
  7. 7.
    7. A. Bak and S. Gündüz: J. Automob. Eng., 2010, vol. 224, pp. 29–40.CrossRefGoogle Scholar
  8. 8.
    8. M. Takahashi: ISIJ Int., 2015, vol. 55, pp. 79–88.CrossRefGoogle Scholar
  9. 9.
    9. S. Hoile: Mater. Sci. Technol.., 2000, vol. 16, pp. 1079–93.CrossRefGoogle Scholar
  10. 10.
    10. M.R.A. Shawon, F. Gulshan, and A.S.W. Kurny: J. Inst. Eng. India Ser. D, 2015, vol. 96, pp. 29–36.CrossRefGoogle Scholar
  11. 11.
    A.C. Baldim, S.C. da Costa, and T.C.S. Aguiar: Weld. Int., 2017, vol. 31, pp. 259–67.CrossRefGoogle Scholar
  12. 12.
    12. M. Goodarzi, S.P.H. Marashi, and M. Pouranvari: J. Mater. Process. Technol., 2009, vol. 209, pp. 4379–84.CrossRefGoogle Scholar
  13. 13.
    H.K.D.H. Bhadeshia: Phase Transformations during Spot Welding of Interstitial-Free Steel. Proc. Int. Conf. on Interstitial-Free Steels, Jamshedpur, 2010, pp. 1–11.Google Scholar
  14. 14.
    14. M. Pouranvari and S.P.H. Marashi: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 361–403.CrossRefGoogle Scholar
  15. 15.
    15. R. Ashiri, M.A. Haque, C.-W. Ji, H.R. Salimijazi, and Y.-D. Park: Scripta Mater., 2015, vol. 109, pp. 6–10.CrossRefGoogle Scholar
  16. 16.
    16. R. Ashiri, M. Shamanian, H.R. Salimijazi, M.A. Haque, J.-H. Bae, C.-W. Ji, K.-G. Chin, and Y.-D. Park: Scripta Mater., 2016, vol. 114, pp. 41–47.CrossRefGoogle Scholar
  17. 17.
    17. S. Rajakumar and V. Balasubramanian: J. Adv. Microsc. Res., 2015, vol. 10, pp. 146–54.CrossRefGoogle Scholar
  18. 18.
    P. Howe and S.C. Kelley: Report No. 880280, SAE International, 1988.Google Scholar
  19. 19.
    M.I. Khan: Master’s Thesis, University of Waterloo, Waterloo, 2007.Google Scholar
  20. 20.
    20. S.S. Rao, R. Chhibber, K.S. Arora, and M. Shome: J. Mater. Process. Technol., 2017, vol. 246, pp. 252–61.CrossRefGoogle Scholar
  21. 21.
    21. M. Pouranvari, H.R. Asgari, S.M. Mosavizadeh, P.H. Marashi, and M. Goodarzi: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 217–25.CrossRefGoogle Scholar
  22. 22.
    F. Mirzaei, H. Ghorbani, and F. Kolahan: Int. J. Adv. Manuf. Technol., 2017, vol. 92, pp. 1–13.CrossRefGoogle Scholar
  23. 23.
    23. D. Kianersi, A. Mostafaei, and J. Mohammadi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4423–42.CrossRefGoogle Scholar
  24. 24.
    24. D.S. Safanama, S.P.H. Marashi, and M. Pouranvari: Sci. Technol. Weld. Join., 2012, vol. 17, pp. 288–94.CrossRefGoogle Scholar
  25. 25.
    25. D.J. Radakovic and M. Tumuluru: Weld. J., 2012, vol. 91, pp. 8–15.Google Scholar
  26. 26.
    26. M. Tumuluru: Weld. J., 2007, vol. 86, pp. 161–69.Google Scholar
  27. 27.
    27. R. Ashiri, S.P.H. Marashi, and Y.-D. Park: Weld. J., 2018, vol. 97, pp. 157–69.CrossRefGoogle Scholar
  28. 28.
    28. M. Pouranvari and S.P.H. Marashi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8337–43.CrossRefGoogle Scholar
  29. 29.
    29. D.J. Radakovic and M. Tumuluru: Weld. J., 2008, vol. 87, pp. 96–105.Google Scholar
  30. 30.
    Standard Test Method for Analysis of Carbon and Low-Alloy Steel by Spark Atomic Emission Spectrometry. ASTM E415-14, ASTM International, West Conshohocken, 2014.Google Scholar
  31. 31.
    Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials. ANSI/AWS/SAE/D8.9M-2012, American Welding Society, Miami, 2012.Google Scholar
  32. 32.
    Standard Test Methods for Determining Average Grain Size,” ASTM E112-13, ASTM International, West Conshohocken, 2013.Google Scholar
  33. 33.
    G. Krauss: Am. Soc. Met., 1980, p. 291.Google Scholar
  34. 34.
    ASM Handbook Committee: Metals Handbook: Heat Treating, ASM International, Metals Park, 1991Google Scholar
  35. 35.
    35. J.Z. Chen and D.F. Farson: J. Mater. Process. Technol., 2006, vol. 178, pp. 251–58.CrossRefGoogle Scholar
  36. 36.
    36. E. Bayraktar, D. Kaplan, L. Devillers, and J.P. Chevalier: J. Mater. Process. Technol., 2007, vol. 189, pp. 114–25.CrossRefGoogle Scholar
  37. 37.
    37. M. Pouranvari, A. Abedi, P. Marashi, and M. Goodarzi: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 39–43.CrossRefGoogle Scholar
  38. 38.
    38. P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, and M. Goodarzi: Mater. Sci. Eng. A, 2008, vol. 480, pp. 175–80.CrossRefGoogle Scholar
  39. 39.
    39. M. Pouranvari and S.P.H. Marashi: Mater. Des., 2010, vol. 31, pp. 3647–52.CrossRefGoogle Scholar
  40. 40.
    40. M. Pouranvari and P. Marashi: Metalurgija, 2009, vol. 15, pp. 149–57.Google Scholar
  41. 41.
    41. H.K.D.H. Bhadeshia and J.W. Cheristian: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 767–97.CrossRefGoogle Scholar
  42. 42.
    Y. Ohmori, H. Ohtsubo, Y.C. Jung, S. Okaguchi, and H. Ohtani: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1981–89.CrossRefGoogle Scholar
  43. 43.
    43. D. Phelan and R. Dippenaar: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3701–06.CrossRefGoogle Scholar
  44. 44.
    44. H.I. Aaronson, G. Spanos, R.A. Masamura, R.G. Vardiman, D.W. Moon, E.S.K. Menon, and M.G. Hall: Mater. Sci. Eng. B, 1995, vol. 32, pp. 107–23CrossRefGoogle Scholar
  45. 45.
    45. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructures and Properties, 3rd ed., Butterworth-Heinemann, Elsevier, Oxford, United Kingdom, 2006.Google Scholar
  46. 46.
    46. S. Kou: Welding Metallurgy, 2nd ed., Wiley-Interscience, Hoboken, NJ, 2003.Google Scholar
  47. 47.
    47. M. Tamizi, M. Pouranvari, and M. Movahedi: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 327–35.CrossRefGoogle Scholar
  48. 48.
    48. I. Hajiannia, M. Shamanian, M. Atapour, E. Ghassemali, and R. Ashiri: Cog. Eng., 2018, vol. 5, pp. 1–13.Google Scholar
  49. 49.
    49. G. Mukhopadhyay, S. Bhattacharya, and K.K. Ray: J. Mater. Process. Technol., 2009, vol. 209, pp. 1995–2007.CrossRefGoogle Scholar
  50. 50.
    50. R. Ashiri, H. Mostaan, and Y.-D. Park: Metall. Mater. Trans. A, 2018, vol. 49A, 6161-72.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Eng. & Q. of AutoSteel DivisionSAIPA GroupTehranIran

Personalised recommendations