Skip to main content
Log in

High-Cycle Fatigue Behavior of High-Mn Steel/304L Stainless Steel Welds at Room and Cryogenic Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-cycle fatigue (HCF) behavior of dissimilar metal welds between high-Mn (HM) steel and 304L stainless steel was investigated at 298 K and 110 K. The resistance to HCF of the 25Mn/304L weld joint was comparable to that of a 304L/304L weld, even at 110 K. The HCF behavior of the dissimilar metal joints between HM steel and 304L could be reasonably predicted by the ultimate tensile strength at both room and cryogenic temperatures, as with the base metal. The failure locations and micro-hardness studies suggested that both geometrical and metallurgical factors were important in determining the HCF behavior of 25Mn/304L weld joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. 1. K.J. Lee, M.S. Chun, M.H. Kim, and J.M. Lee: Comput. Mater. Sci., 2009, vol. 46, pp. 1152-62.

    Article  Google Scholar 

  2. 2. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mat. Sci., 2011, vol. 15, pp. 141-68.

    Article  Google Scholar 

  3. 3. D.-H. Jeong, S.-G. Lee, W.-K. Jang, J.-K. Choi, Y.-J. Kim, and S. Kim: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4601-12.

    Article  Google Scholar 

  4. 4. J. Sanchez, O. Galao, J. Torres, J. Fullea, C. Andrade, J.C. Garcia, J. Ruesga, and P. Cano: Eng. Fail. Anal., 2017, vol. 79, pp. 876-88.

    Article  Google Scholar 

  5. 5. R. Tobler and R. Reed: J. Test. Eval., 1984, vol. 12, pp. 364-70.

    Article  Google Scholar 

  6. 6. N.B. Fredj and H. Sidhom: Cryogenics, 2006, vol. 46, pp. 439-48.

    Article  Google Scholar 

  7. 7. Y.-S. Yoon, H.-Y. Ha, T.-H. Lee, and S. Kim: Corrosion Sci., 2014, vol. 80, pp. 28-36.

    Article  Google Scholar 

  8. 8. D. Jeong, S. Lee, I. Seo, J. Yoo, and S. Kim: Met. Mater. Int., 2015, vol. 21, pp. 22-30.

    Article  Google Scholar 

  9. 9. A.P. Reynolds, W. Tang, T. Gnaupel‐Herold, and H. Prask: Scr. Mater., 2003, vol. 48, pp. 1289-94.

    Article  Google Scholar 

  10. 10. V. Shankar, T.P.S. Gill, S.L. Mannan, and S. Sundaresan: Mater. Sci. Eng. A, 2003, vol. 343, pp. 170-81.

    Article  Google Scholar 

  11. 11. Q. Dai, R. Yang, and K. Chen: Mater. Charact., 1999, vol. 42, pp. 21-26.

    Article  Google Scholar 

  12. 12. D. Jeong, H. Sung, T. Park, J. Lee, and S. Kim: Met. Mater. Int., 2016, vol. 22, pp. 601-08.

    Article  Google Scholar 

  13. 13. H. Sung, D. Jeong, T. Park, J. Lee, and S. Kim: Met. Mater. Int., 2016, vol. 22, pp. 755-63.

    Article  Google Scholar 

  14. 14. M. Mukherjee and T.K. Pal: Mater. Charact., 2017, vol. 131, pp. 406-24.

    Article  Google Scholar 

  15. 15. T. Saeid, A. Abdollah-Zadeh, H. Assadi, and F.M. Ghaini: Mater. Sci. Eng. A, 2008, vol. 496, pp. 262-68.

    Article  Google Scholar 

  16. 16. M.L. Zhu, F.Z. Xuan, Y.N. Du, and S.T. Tu: Int. J. Fatigue, 2012, vol. 40, pp. 74-83.

    Article  Google Scholar 

  17. 17. D. Jeong, T. Park, J. Lee, and S. Kim: Met. Mater. Int., 2015, vol. 21, pp. 453-60.

    Article  Google Scholar 

  18. 18. Z. Mei and J.W. Morris: Metall. Mater. Trans. A, 1990, vol. 21, pp. 3137-52.

    Article  Google Scholar 

  19. 19. D.Y. Ryoo, S.C. Lee, Y.D. Lee, and J.Y. Kang: J. Korean Inst. Met. Mater., 2001, vol. 39, pp. 1381-91.

    Google Scholar 

  20. 20. J. Kwon, Y. Kim, S. Han, M. Goto, and S. Kim: Met. Mater. Int., 2009, vol. 15, pp. 925-29.

    Article  Google Scholar 

  21. 21. Y. Jang, S. Jin, Y. Jeong, and S. Kim: Metall. Mater. Trans. A, 2010, vol. 41, pp. 19-21.

    Article  Google Scholar 

  22. 22. D.-H. Jung, J.-K. Kwon, N.-S. Woo, Y.-J. Kim, M. Goto, and S. Kim: Metall. Mater. Trans. A, 2014, vol. 45, pp. 654-62.

    Article  Google Scholar 

  23. 23. W. Seo, D. Jeong, H. Sung, and S. Kim: Mater. Charact., 2017, vol. 124, pp. 65-72.

    Article  Google Scholar 

  24. 24. T.L. Teng, C.P. Fung, and P.H. Chang: Int. J. Pressure Vessels Pip., 2002, vol. 79, pp. 467-82.

    Article  Google Scholar 

  25. 25. V. Caccese, P.A. Blomquist, K.A. Berube, S.R. Webber, and N.J. Orozco: Mar. Struct., 2006, vol. 19, pp. 1-22.

    Article  Google Scholar 

  26. 26. J. Ishimaru, K. Kawabata, H. Morita, H. Ikkai, and Y. Suetake: Mitsubishi Heavy Industries Technical Review, 2004, vol. 41, pp. 1-7.

    Google Scholar 

  27. 27. A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vol. 483, pp. 184-87.

    Article  Google Scholar 

  28. 28. E. Mazancová and K. Mazanec: Materials Engineering, 2009, vol. 16, pp. 26-31.

    Google Scholar 

  29. 29. J. Jiménez and G. Frommeyer: Mater. Charact., 2010, vol. 61, pp. 221-26.

    Article  Google Scholar 

  30. L. Mújica Roncery, S. Weber, and W. Theisen: Scr. Mater., 2012, vol. 66, pp. 997-1001.

    Article  Google Scholar 

  31. 31. G.V. Voort: Metallography: principles and practice. McGraw-Hill Book Company, New York, 1999.

    Google Scholar 

  32. ASTM E112-13: Standard Test Methods for Determining Average Grain Size, Annual Book of ASTM Standards, vol. 03.01, 2013.

  33. ASTM E8/E8M-16a: Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards, vol. 03.01, 2016.

  34. ASTM E466-15: Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue Test of Metallic Materials, Annual Book of ASTM standards, vol. 03.01, 2015.

  35. 35. H.S. Hosseini, M. Shamanian, and A. Kermanpur: Mater. Charact., 2011, vol. 62, pp. 425-31.

    Article  Google Scholar 

  36. 36. F. Brennan, P. Peleties, and A. Hellier: Int. J. Fatigue, 2000, vol. 22, pp. 573-84.

    Article  Google Scholar 

  37. 37. I. Serrano-Munoz, J.Y. Buffiere, R. Mokso, C. Verdu, and Y. Nadot: Sci. Rep., 2017, vol. 7, 45239.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1C1B5018001). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2018R1A5A6075959), and the Industrial Strategic Technology Development Program (10062514, Development of High pressure Diverter for control offshore oil well) funded By the Ministry of Trade, Industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Additional information

Manuscript submitted January 25, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, H., Lee, K., Jeong, D. et al. High-Cycle Fatigue Behavior of High-Mn Steel/304L Stainless Steel Welds at Room and Cryogenic Temperatures. Metall Mater Trans A 50, 1261–1272 (2019). https://doi.org/10.1007/s11661-018-5095-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5095-0

Navigation