Skip to main content
Log in

Effect of Cu Presence on Evolution of Mechanical and Magnetic Properties in a Novel Fe-Based Bulk Metallic Glass During Partial Annealing Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fe-based bulk metallic glasses (BMGs) often demonstrate extremely poor toughness at room temperature, which seriously limit their widespread application. This study is focused on the improvement of mechanical properties (especially toughness) and ferromagnetic manner of a new Fe-based BMG by using partial annealing and minor addition of Cu as an alloying element simultaneously. The results revealed that the volume fraction of crystalline phases increased with the minor addition of Cu during the partial annealing process. Therefore, maximum hardness and toughness were observed in the alloy with 0.25 at. pct Cu after annealing within a temperature range of the fourth crystallization stage due to the high Poisson’s ratios (υ) of this element and the presence of nano-crystalline phases in the amorphous matrix with an optimal average size. Also, saturation magnetization of the as-cast BMG increased with the minor addition of Cu due to the formation of short-range order regions. While with addition of Cu, this magnetic parameter was reduced in annealed alloys due to an increase in the concentration of non-magnetic Cu atoms around the α-Fe nano-crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.C. Miguel, P. Moretti, M. Zaiser, and S. Zapperi: Mater. Sci. Eng. A, 2005, vol. 400–401, pp. 191–8.

    Google Scholar 

  2. H.B. Ke, H.Y. Xu, H.G. Huang, T.W. Liu, P. Zhang, M. Wu, P.G. Zhang, and Y.M. Wang: J. Alloys Compd., 2017, vol. 691, pp. 436–41.

    CAS  Google Scholar 

  3. R. Navamathavan, D. Arivuoli, G. Attolini, C. Pelosi, and C.K. Choi: Mater. Lett., 2006, vol. 60, pp. 2949–53.

    CAS  Google Scholar 

  4. K. Wu, N. Abriak, F. Becquart, P. Pizette, S. Remond, and S. Liu: Granul. Matter, 2017, vol. 19, p. 65.

    Google Scholar 

  5. S. Bensaada, M.T. Bouziane, and F. Mohammedi: Mater. Lett., 2011, vol. 65, pp. 2829–32.

    CAS  Google Scholar 

  6. F.F.F. Lavrentev: Mater. Sci. Eng., 1980, vol. 46, pp. 191–208.

    CAS  Google Scholar 

  7. I. Binkowski, G.P. Shrivastav, J. Horbach, S. V Divinski, and G. Wilde: Acta Mater., 2016, vol. 109, pp. 330–40.

    CAS  Google Scholar 

  8. W. Feng, L. Mu-sen, L. Yu-peng, and Q. Yong-xin: 2005, vol. 59, pp. 916–9.

    Google Scholar 

  9. A. Khalajhedayati and T.J. Rupert: Acta Mater., 2014, vol. 65, pp. 326–37.

    CAS  Google Scholar 

  10. F. Berto and P. Lazzarin: Mater. Sci. Eng. R Reports, 2014, vol. 75, pp. 1–48.

    Google Scholar 

  11. M. Stoica, J. Eckert, S. Roth, A.R. Yavari, and L. Schultz: J. Alloys Compd., 2007, vol. 434–435, pp. 171–5.

    Google Scholar 

  12. M.-H. Phan, H.-X. Peng, M.R. Wisnom, S.-C. Yu, and N. Chau: Compos. Part A Appl. Sci. Manuf., 2006, vol. 37, pp. 191–6.

    Google Scholar 

  13. N. Amini, M. Miglierini, and M. Hasiak: in AIP Conference Proceedings, vol. 1781, 2016, p. 020001.

  14. H.Y. Jung, M. Stoica, S. Yi, D.H. Kim, and J. Eckert: J. Magn. Magn. Mater., 2014, vol. 364, pp. 80–4.

    CAS  Google Scholar 

  15. H. Ikram, F.A. Khalid, M. Akmal, and Z. Abbas: J. Mater. Eng. Perform., doi:10.1007/s11665-017-2753-0.

    Article  Google Scholar 

  16. A. Makino, X. Li, K. Yubuta, C. Chang, T. Kubota, and A. Inoue: Scr. Mater., 2009, vol. 60, pp. 277–80.

    CAS  Google Scholar 

  17. M. Shi, Z. Liu, and T. Zhang: J. Magn. Magn. Mater., 2015, vol. 378, pp. 417–23.

    CAS  Google Scholar 

  18. X. Li, H. Kato, K. Yubuta, A. Makino, and A. Inoue: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2598–602.

    Google Scholar 

  19. P. Ramasamy, M. Stoica, S. Bera, M. Calin, and J. Eckert: J. Alloys Compd., 2017, vol. 707, pp. 78–81.

    CAS  Google Scholar 

  20. F. Saeidi and M. Nili-Ahmadabadi: Mater. Lett., 2015, vol. 143, pp. 108–11.

    CAS  Google Scholar 

  21. F. Gaertner and R. Bormann: J. Phys., 1990, vol. 51, pp. C495–9.

    Google Scholar 

  22. Y.G. Chen and B.X. Liu: Mater. Sci. Eng. B, 1998, vol. 52, pp. 1–7.

    Google Scholar 

  23. V.Z. Bengus, E.D. Tabachnikova, P. Duhaj, and V. Ocelík: Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 823–32.

    Google Scholar 

  24. J.D. Schuler and T.J. Rupert: Acta Mater., 2017, vol. 140, pp. 196–205.

    CAS  Google Scholar 

  25. L.M. Williams and D.W. Hess: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 1983, vol. 1, pp. 1810–19.

  26. M.G. Scott: J. Mater. Sci., 1978, vol. 13, pp. 291–6.

    CAS  Google Scholar 

  27. L. Morsdorf, K.G. Pradeep, G. Herzer, A. Kovács, R.E. Dunin-Borkowski, I. Povstugar, G. Konygin, P. Choi, and D. Raabe: J. Appl. Phys., 2016, vol. 119, p. 124903.

    Google Scholar 

  28. M.J. Duarte, A. Kostka, J.A. Jimenez, P. Choi, J. Klemm, D. Crespo, D. Raabe, and F.U. Renner: Acta Mater., 2014, vol. 71, pp. 20–30.

    CAS  Google Scholar 

  29. Y. He, G.J. Shiflet, and S.J. Poon: Acta Metall. Mater., 1995, vol. 43, pp. 83–91.

    CAS  Google Scholar 

  30. H. Choi-yim, R.D. Conner, F. Szuecs, and W.L. Johnson: Acta Mater., 2002, vol. 50, pp. 2737–45.

    CAS  Google Scholar 

  31. H. Choi-Yim, R.D. Conner, F. Szuecs, and W.L. Johnson: Scr. Mater., 2001, vol. 45, pp. 1039–45.

    CAS  Google Scholar 

  32. H. Choi-Yim, J. Schroers, and W.L. Johnson: Appl. Phys. Lett., 2002, vol. 80, pp. 1906–8.

    CAS  Google Scholar 

  33. L. Dou, H. Liu, L. Hou, L. Xue, W. Yang, Y. Zhao, C. Chang, and B. Shen: J. Magn. Magn. Mater., 2014, vol. 358–359, pp. 23–6.

    Google Scholar 

  34. M. Stoica, P. Ramasamy, I. Kaban, S. Scudino, M. Nicoara, G.B.M. Vaughan, J. Wright, R. Kumar, and J. Eckert: Acta Mater., 2015, vol. 95, pp. 335–42.

    CAS  Google Scholar 

  35. S. Tao, T. Ma, H. Jian, Z. Ahmad, H. Tong, and M. Yan: Mater. Sci. Eng. A, 2010, vol. 528, pp. 161–4.

    Google Scholar 

  36. H.E. Khalifa, J.L. Cheney, and K.S. Vecchio: Mater. Sci. Eng. A, 2008, vol. 490, pp. 221–8.

    Google Scholar 

  37. A. Masood, V. Ström, L. Belova, K. V. Rao, and J. Ågren: J. Appl. Phys., 2013, vol. 113, p. 013505.

    Google Scholar 

  38. X. Li, Y. Zhang, H. Kato, A. Makino, and A. Inoue: Key Eng. Mater., 2012, vol. 508, pp. 112–6.

    CAS  Google Scholar 

  39. A. Inoue, B.L. Shen, and C.T. Chang: Acta Mater., 2004, vol. 52, pp. 4093–9.

    CAS  Google Scholar 

  40. E. Civan, K. Sarlar, and I. Kucuk: Philos. Mag., 2017, vol. 97, pp. 1464–78.

    CAS  Google Scholar 

  41. M. Shi, Z. Liu, and T. Zhang: J. Mater. Sci. Technol., 2015, vol. 31, pp. 493–7.

    Google Scholar 

  42. H.Y. Jung and S. Yi: Intermetallics, 2010, vol. 18, pp. 1936–40.

    CAS  Google Scholar 

  43. J. Garus, S. Garus, M. Nabiałek, and M. Szota: Acta Phys. Pol. A, 2014, vol. 126, pp. 954–6.

    Google Scholar 

  44. J.E. Gao, H.X. Li, Z.B. Jiao, Y. Wu, Y.H. Chen, T. Yu, and Z.P. Lu: Appl. Phys. Lett., 2011, vol. 99, p. 052504.

    Google Scholar 

  45. Q.-J. Chen, J. Shen, H.-B. Fan, J.-F. Sun, Y.-J. Huang, and G. Mccartney: Chinese Phys. Lett., 2005, vol. 22, pp. 1736–8.

    CAS  Google Scholar 

  46. Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, and J.F. Sun: J. Mater. Res., 2007, vol. 22, pp. 358–63.

    CAS  Google Scholar 

  47. J. Shen, Q. Chen, J. Sun, H. Fan, and G. Wang: Appl. Phys. Lett., 2005, vol. 86, p. 151907.

    Google Scholar 

  48. P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani: J. Alloys Compd., 2018, vol. 738, pp. 197–205.

    CAS  Google Scholar 

  49. S. Hasani, P. Rezaei-Shahreza, A. Seifoddini, and M. Hakimi: J. Non. Cryst. Solids, 2018, vol. 497, pp. 40–47.

    CAS  Google Scholar 

  50. H.W. Yang, J. Wen, M.X. Quan, and J.Q. Wang: J. Non. Cryst. Solids, 2009, vol. 355, pp. 235–8.

    CAS  Google Scholar 

  51. T. Gloriant, M. Gich, S. Suriñach, M.D. Baró, and A.L. Greer: J. Metastable Nanocrystalline Mater., 2000, vol. 8, pp. 365–70.

    Google Scholar 

  52. S. Cardinal, J.M. Pelletier, M. Eisenbart, and U.E. Klotz: Mater. Sci. Eng. A, 2016, vol. 660, pp. 158–65.

    CAS  Google Scholar 

  53. S. Enzo, S. Polizzi, and A. Benedetti: Zeitschrift für Krist. - Cryst. Mater., 1985, vol. 170, pp. 275–87.

    CAS  Google Scholar 

  54. A. Inoue, H. Tomioka, and T. Masumoto: J. Mater. Sci., 1983, vol. 18, pp. 153–60.

    CAS  Google Scholar 

  55. A.L. Greer: Mater. Sci. Eng. A, 2001, vol. 304–306, pp. 68–72.

    Google Scholar 

  56. P. Scherrer: Math. Klasse, 1918, vol. 2, pp. 98–100.

    Google Scholar 

  57. P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani: Thermochim. Acta, 2017, vol. 652, pp. 119–25.

    CAS  Google Scholar 

  58. P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani: J. Non. Cryst. Solids, 2017, vol. 471, pp. 286–94.

    CAS  Google Scholar 

  59. J. Dutkiewicz, A. Kukula, L. Litynska-Dobrzynska, and W. Maziarz: Mater. Trans., 2011, vol. 52, pp. 304–8.

    CAS  Google Scholar 

  60. C. Suryanarayana, T. Klassen, and E. Ivanov: J. Mater. Sci., 2011, vol. 46, pp. 6301–15.

    CAS  Google Scholar 

  61. H.S. Kim: Scr. Mater., 2003, vol. 48, pp. 43–9.

    CAS  Google Scholar 

  62. A.L. Greer, K.L. Rutherford, and I.M. Hutchings: Int. Mater. Rev., 2002, vol. 47, pp. 87–112.

    CAS  Google Scholar 

  63. Y.H. Kim, K. Hiraga, A. Inoue, T. Masumoto, and H.H. Jo: Mater. Trans. JIM, 1994, vol. 35, pp. 293–302.

    CAS  Google Scholar 

  64. T. Gloriant: J. Non. Cryst. Solids, 2003, vol. 316, pp. 96–103.

    CAS  Google Scholar 

  65. Z.C. Zhong, X.Y. Jiang, and A.L. Greer: Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 531–5.

    Google Scholar 

  66. H.W. Zhang, G. Subhash, X.N. Jing, L.J. Kecskes, and R.J. Dowding: Philos. Mag. Lett., 2006, vol. 86, pp. 333–45.

    CAS  Google Scholar 

  67. V. Keryvin, X.D. Vu, V.H. Hoang, and J. Shen: J. Alloys Compd., 2010, vol. 504, pp. S41–4.

    Google Scholar 

  68. J. Eckert, U. Kühn, J. Das, S. Scudino, and N. Radtke: Adv. Eng. Mater., 2005, vol. 7, pp. 587–96.

    CAS  Google Scholar 

  69. C. Wang, M. Li, M. Zhu, H. Wang, C. Qin, W. Zhao, and Z. Wang: Nanomaterials, 2017, vol. 7, p. 352.

    Google Scholar 

  70. H. Kimura, A. Inoue, S. Yamaura, K. Sasamori, M. Nishida, Y. Shinpo, and H. Okouchi: Mater. Trans., 2003, vol. 44, pp. 1167–71.

    CAS  Google Scholar 

  71. D. Sherman and D.G. Brandon: J. Mater. Res., 1997, vol. 12, pp. 1335–43.

    CAS  Google Scholar 

  72. K. Niihara, R. Morena, and D.P.H. Hasselman: J. Mater. Sci. Lett., 1982, vol. 1, pp. 13–6.

    CAS  Google Scholar 

  73. A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen: J. Adv. Ceram., 2013, vol. 2, pp. 87–102.

    CAS  Google Scholar 

  74. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: J. Am. Ceram. Soc., 1981, vol. 64, pp. 533–8.

    CAS  Google Scholar 

  75. B. Gludovatz, S.E. Naleway, R.O. Ritchie, and J.J. Kruzic: Acta Mater., 2014, vol. 70, pp. 198–207.

    CAS  Google Scholar 

  76. P. Lowhaphandu and J.J. Lewandowski: Scr. Mater., 1998, vol. 38, pp. 1811–7.

    CAS  Google Scholar 

  77. J. Qiao, H. Jia, and P.K. Liaw: Mater. Sci. Eng. R Reports, 2016, vol. 100, pp. 1–69.

    Google Scholar 

  78. M. Jafary-Zadeh, G. Praveen Kumar, P. Branicio, M. Seifi, J. Lewandowski, and F. Cui: J. Funct. Biomater., 2018, vol. 9, p. 19.

    Google Scholar 

  79. A. Inoue and A. Takeuchi: Acta Mater., 2011, vol. 59, pp. 2243–67.

    CAS  Google Scholar 

  80. M. Ferry, K.J. Laws, C. White, D.M. Miskovic, K.F. Shamlaye, W. Xu, and O. Biletska: MRS Commun., 2013, vol. 3, pp. 1–12.

    CAS  Google Scholar 

  81. M. Lundberg, J. Saarimäki, J.J. Moverare, and R.L. Peng: J. Mater. Sci., 2018, vol. 53, pp. 2766–73.

    CAS  Google Scholar 

  82. G. Abrosimova and A. Aronin: Mater. Lett., 2017, vol. 206, pp. 64–6.

    CAS  Google Scholar 

  83. G. Abrosimova, A. Aronin, D. Matveev, and E. Pershina: Mater. Lett., 2013, vol. 97, pp. 15–7.

    CAS  Google Scholar 

  84. B.R. Lawn and D.B. Marshall: J. Am. Ceram. Soc., 1979, vol. 62, pp. 347–50.

    CAS  Google Scholar 

  85. D.B. Marshall, B.R. Lawn, and P. Chantikul: J. Mater. Sci., 1979, vol. 14, pp. 2225–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hasani.

Additional information

Manuscript submitted June 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasani, S., Rezaei-Shahreza, P. & Seifoddini, A. Effect of Cu Presence on Evolution of Mechanical and Magnetic Properties in a Novel Fe-Based Bulk Metallic Glass During Partial Annealing Process. Metall Mater Trans A 50, 63–71 (2019). https://doi.org/10.1007/s11661-018-4976-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4976-6

Navigation