Skip to main content
Log in

Effect of Strain Rate and Temperature on the Tensile Flow Behavior and Microstructure Evolution in Fe-0.3 Pct C-CrMoV Grade Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of temperature and strain rate on the tensile flow behavior of Fe-0.3 pct C-CrMoV grade steel was studied over a wide range of strain rates (10−4 to 10−1 s−1) and temperatures (700 °C to 950 °C). The flow curves of the steel showed typical dynamic recovery (DRV)-type characteristics at low temperature, high strain rate, and dynamic recrystallization (DRX) type at high temperature > 775 °C. Stress regimes with stress exponent (n) of 3.6 to 5.5 for low–high stresses were observed. The ‘n’ values at temperatures of 850 °C and 900 °C were found to be > 4, which correspond to dislocation climb as the rate controlling mechanism. At 950 °C, ‘n’ value was found to be < 4, where viscous glide is the rate controlling mechanism. The apparent activation energy (Q) was found to be 320 ± 12 kJ mol−1. Hence, the dominant high-temperature deformation mechanism was identified as high-temperature climb of edge dislocations. The strain rate sensitivity index (m) of the steel was evaluated using jump strain rate tests and cyclic temperature and strain rate jump tests over temperatures of 700 °C to 950 °C and strain rates of 10−4 to 10−3 s−1 . Although, ‘m’ value as high as 0.5 was observed, cavitation resulted in premature failure during deformation resulting in low elongation. The volume fraction of cavities was inversely proportional to the strain rate at all temperatures. The fine-grained microstructure aids grain boundary sliding, and diffusion thereby favors the cavity growth at low strain rates. Microstructures evolved during the high-temperature tensile tests were analyzed and the optimum conditions for hot deformation i.e., hot rolling/hot forming schedules were determined as the temperature range of 850 °C to 950 °C and strain rate range of 10−3 to 10−4 s−1. The flow stress data for the steel were found to follow the universal Dorn sine hyperbolic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T.V. Philip and T.J. McCaffy: Metals Handbook, vol. 1, 10th ed., ASM International, Materials Park, OH, 1990, pp. 20–24.

  2. K. Sreekumar, M. S. P. Murthy, A. Natarajan, P. P. Sinha, and K. V. Nagarajan: Trans. Ind. Inst. Met., 1982, vol. 35, pp. 349–55.

    CAS  Google Scholar 

  3. G. M. Padki, M. S. N. Balasubramanian, K. M. Gupta, and P. K. Rao: Ironmaking and Steelmaking, 1983, vol. 10, pp.180–85.

    CAS  Google Scholar 

  4. M. Chatterjee, M. S. N. Balasubramanian, K. M. Gupta, and P.K. Rao: Ironmaking and Steelmaking, 1990, vol. 17, pp. 38–42.

    CAS  Google Scholar 

  5. K. Saravanan, R. Suresh Kumar, V.M.J. Sharma, D. Sivakumar, P. Ramkumar, P. Ramesh Narayanan, K. Sreekumar and P.P. Sinha: Mater. Sci. Forum, 2012, vol. 710, pp. 433–38.

  6. S. K. Maity, N. B. Ballal and R. Kawalla: The Iron and Steel Institute of Japan International, 2006, vol. 46, pp. 1361-70.

    Article  CAS  Google Scholar 

  7. S. K. Maity, N. B. Ballal, R. Kawalla and G. Goldhahn: The Iron and Steel Institute of Japan International, 2008, vol. 49, pp. 902-10.

    Article  Google Scholar 

  8. M.R. Suresh: Development of a new ultrahigh strength steel and studies of its microstructure and properties, Ph.D. Thesis, Department of Metallurgical Engineering and Material Science, IIT Bombay, India, 2002.

  9. M. R. Suresh: Trans. Ind. Inst. Met., 2011, vol. 64, pp. 483–92.

    Article  CAS  Google Scholar 

  10. M. R. Suresh, I. Samajdar, A. Ingle, N. B. Ballal, P. K. Rao and P. P. Sinha: Ironmaking and Steelmaking, 2003, vol. 30, pp. 379-86.

    Article  CAS  Google Scholar 

  11. T.R. Bandyopadhyay: Ultrahigh strength steel development using electroslag refining with inoculation, Ph.D. Thesis, Department of Metallurgical Engineering and Material Science, IIT Bombay, India, 2006.

  12. P. Ramkumar, V. Anil Kumar, R.K. Gupta, M.K. Karthikeyan, S. Narahari Prasad, F. Gino Prakash, K.V.A. Chakravarthi, Y. Maruthi Prasad and P. V. Venkitakrishnan: Trans. Ind. Inst. Met., 2018, https://doi.org/10.1007/s12666-018-1283-2.

  13. T. R Bandyopadhyay, P. K. Rao and N. Prabhu: Ironmaking and Steelmaking, 2006, vol. 33, pp. 331-36.

    Article  CAS  Google Scholar 

  14. T. Gladman: The physical Metallurgy of microalloyed steels, 1st Ed., Institute of Matetrials, The University Press, London, 1997, pp. 28-34.

    Google Scholar 

  15. F.B. Pickering and T. Gladman: ISI Special Report, pp. 81–83, 1961.

  16. S. K. Mishra, S. Das and S. Ranganathan: Mater. Sci. Eng. A., 2002, vol. 323, pp. 285–90.

    Article  Google Scholar 

  17. P. Ramkumar, V. Anil Kumar, R.K. Gupta, M.K. Karthikeyan, C. Magadum and V. Muthupandi: Trans. Ind. Inst. Met., 2016, https://doi.org/10.1007/s12666-016-0927-3.

  18. M.R. Suresh, P.P. Sinha, D.S. Sarma, N.B. Ballal and P. Krishna Rao: J. Mater. Sci., 2007, vol. 42, pp. 5602–12.

  19. S. Alsagabi, T. Shrestha and I. Charit: J. Nucl. Mater., 2014, vol. 453 pp. 151–7.

    Article  CAS  Google Scholar 

  20. Y. C. Huang, Y. C. Lin, J. Deng, G. Liu, M. S. Chen: Mater. Des., 2014, vol. 53, pp. 349-56.

    Article  CAS  Google Scholar 

  21. A. K. Mukerjee, J. E. Bird and J. E. Dorn: Trans. ASM, 1969, vol. 62, pp.155-79.

    Google Scholar 

  22. H. J Frost and M. F. Ashby: Deformation mechanism maps, The plasticity and creep of metals and ceramics, 1st Ed., Pergoman press, Oxford, UK, 1982, pp. 1-11.

    Google Scholar 

  23. C. M. Sellars and W.T. M. Tegart: Int. Metal. Rev., 1972, vol. 17, pp. 1-24.

    Article  CAS  Google Scholar 

  24. B.P. Kashyap and A.K. Mukherjee: Res. Mechanica., 1986, vol. 17, pp. 293-355.

    Google Scholar 

  25. A. H. Chokshi: Met. Trans. A., 1987, vol. 18, pp. 63-7.

    Article  Google Scholar 

  26. N. Ridley and Z.C. Wang: Mater. Sci. For., 1994, vol. 170-172, pp. 177-86.

    Article  Google Scholar 

  27. N. Ridley and Z.C. Wang: Mater. Sci. For., 1997, vol. 233-234, pp. 63-80.

    Google Scholar 

  28. J.P. Speer, C.M. Enloe, K.O. Findley, C.J. Van Tyne and E.J. Pavlina, in Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels, vol. 2, TMS, UK, 2015, pp. 85–98.

  29. R. Okamoto, A. Borgenstam and J. Argen: Acta Mater., 2010, vol. 58, pp. 4783-90.

    Article  CAS  Google Scholar 

  30. V. Nagarajan: Int. Heat. Treat. Surf. Eng., 2014, vol 8-2, pp.80-5.

    Article  Google Scholar 

  31. P. Gong, E.J. Palmiere and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp.392-403.

    Article  CAS  Google Scholar 

  32. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop and S. Suresh: Acta Mater., 2003, vol. 51, pp.5159-72.

    Article  CAS  Google Scholar 

  33. Y. Maehara and T. G. Langdon: Mater. Sci. Eng. A., 1990, vol. 128, pp. 1-13.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank National Facility for texture and OIM Lab, IIT Bombay for the support provided in EBSD work. The authors also acknowledge the support of FIST lab, MEMS department, for the support extended for testing and IFF/MME/VSSC for the fabrication support extended by them. The authors also thankfully acknowledge GM and DD, MME/VSSC for providing guidance during this work and Director, VSSC for kind permission to publish the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Gupta.

Additional information

Manuscript submitted April 29, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilip Chandra Kumar, G., Anil Kumar, V., Gupta, R.K. et al. Effect of Strain Rate and Temperature on the Tensile Flow Behavior and Microstructure Evolution in Fe-0.3 Pct C-CrMoV Grade Steel. Metall Mater Trans A 50, 161–178 (2019). https://doi.org/10.1007/s11661-018-4963-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4963-y

Navigation