Skip to main content
Log in

Assessment of Shell Strength During Solidification in the Mold Cracking Simulator (MCS) Test

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To properly model the cracking susceptibility during solidification under continuous casting conditions, it is essential to have accurate data. Such data for the mechanical properties of steel during solidification are scarce if not non-existent. An experimental tool called the Mold Cracking Simulator (MCS) has been used to simulate the initial shell formation under continuous casting conditions. As part of the test, the shell is mechanically subjected to deformation. A mathematical model has been developed to translate the force and elongation measured during the MCS trials into stress–strain components. To test the model and validate the assumptions, two steel grades were tested, a peritectic steel grade and a higher-alloyed grade. The results show that the reproducibility of the test is very good and the stress–strain curves are consistent with the steel composition. Moreover, the metallographic and fractographic analysis of the deformed MCS samples shows that the microstructure is comparable to that of a continuously cast product and the cracks generated are interdendritic, i.e., hot tears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

T S :

Solidus temperature (°C)

T L :

Liquidus temperature (°C)

L :

Length of the wedge (19.9 mm)

d mold :

Diameter of the mold (69.36 mm)

θ :

Angle of the curved inclined surface

R :

Radius of solidified shell in (mm)

t :

Thickness of the solidified shell in (mm)

F N :

Normal force perpendicular to the incline plane (N)

F w :

Load transmitted by wedge on to the shell (N)

F S :

Sliding force along the inclined plane (N)

F :

Difference between forces measured during hot test and cold test (N)

dy :

Incremental displacement in positive longitudinal direction, i.e., from A to AI

dx :

Incremental displacement in radial direction from B to BI (refer Figure 4)

\( \dot{\varepsilon } \) :

Strain rate, change in strain of a material with respect to time (1/s)

σ p :

Peak stress (MPa)

\( \dot{\varepsilon }_{p} \) :

Strain at Peak stress (pct)

ε θθ , ε rr, and ε zz :

Normal strains measured along the radial, tangential, and axial directions, respectively (elongation/shortening of material per unit length)

σ θθ, σ rr, and σ zz :

Normal stress along the radial, tangential, and axial directions, respectively (force per unit area)

τ θθ, τ θz, and τ zr :

Shear stress, components of stress coplanar with a material cross section (force per unit area)

References

  1. K.O. Yu, ed., Modelling for casting and solidification processing, vol. 1. New York: Marcel Dekker, 2009.

  2. [2] W. T. J. Lankford, Metall. Trans., vol. 3, 1972, pp. 1331–1356.

    Article  CAS  Google Scholar 

  3. [3] H. Mizukami, A. Yamanaka, and T. Watanabe, ISIJ Int., vol. 42, no. 9, 2002, pp. 964–973.

    Article  CAS  Google Scholar 

  4. [4] T. Nakagawa, T. Umeda, J. Murata, and Y. Kamimura, ISIJ Int., vol. 35, No. 6, 1995, pp. 723–729.

    Article  CAS  Google Scholar 

  5. [5] B. Mintz, J. R. Wilcox, and D. N. Crowther, Mater. Sci. Technol., vol. 2, no. 6, 1986, pp. 589–594.

    Article  CAS  Google Scholar 

  6. [6] C. Bernhard, H. Hiebler, and M. M. Wolf, ISIJ Int., vol. 36, 1996, pp. 163–166.

    Article  Google Scholar 

  7. [7] H. Presslinger et al., ISIJ Int., vol. 46, no. 12, pp. 1845–1851, 2006.

    Article  CAS  Google Scholar 

  8. H. Yasunaka, T. Mori, H. Nakata, F. Kamei, and S. Harada: Steelmak. Process., 1986 (69), pp. 497–502.

  9. H. G. SUZUKI, S. Nishimura, and Y. NAKAMURA, Trans. iron steel Inst. Japan, vol. 24, no. 1, 1984, pp. 54–59.

    Article  CAS  Google Scholar 

  10. 10.B. Rogberg: Scand. J. Metall., 1983, vol 12, pp. 51–66.

    CAS  Google Scholar 

  11. K. Hansson: Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2001.

  12. T.T. Natarajan, T.J. Piccone, K.D. Powers, C.C. Snyder, A. Badri, and A.W. Cramb: AISTech2004, 2004, vol. II, pp. 1013–25.

  13. P. Kozlowski, Thomas B.G., J. Azzi, and Wang H.: Metall. Trans. A, vol. 23A, 1992, pp. 903–18.

    Article  CAS  Google Scholar 

  14. H. Zhang, Y. Wang, W. Zhang: Metall. Mater. Trans .B, vol. 47B, 2016, pp. 2244–2252.

    Article  Google Scholar 

  15. [15] P. Ackermann, W. Kurz, and W. Heinemann, Mater. Sci. Eng., vol. 75, no. 1, 1985, pp. 79–86.

    Article  CAS  Google Scholar 

  16. C. Bernhard, R. Pierer, and S. Michelic: AISTech, 2010, pp. 977–86.

  17. B. Santillana and M. Cruijff: WO patent request, 2011.

  18. [18] G. E.Dieter, Mechanical Metallurgy, vol. SI metric. McGraw-Hill Book Co. UK LTD, 1998.

    Google Scholar 

  19. B. Santillana, B.G. Thomas, A. Hamoen, L.C. Hibbeler, A. Kamperman, and W. Van Der Knoop, AISTech - Iron and Steel Technology Conference Proceedings, 2007, vol. 2, CD-Rom.

  20. B.G. Thomas, A. Moitra, and H. Zhu, Miner. Met. Mater. Soc. 1995, pp. 240–49.

  21. [21] V. Vullo, Circular cylinders and pressure vessels. Stress Analysis and Design, Springer s. Springer-Verlag - Berlin, 2014.

    Book  Google Scholar 

  22. B. Santillana, B.G. Thomas, G. Botman, and E. Dekker: in 7th European Continuous Casting Conference, 2012.

  23. 23.Suzuki T, Yu CH, Emi T (1997) ISIJ Int. 37(4), 375–382.

    Article  CAS  Google Scholar 

  24. C. Bernhard, H. Hiebler, and M.M. Wolf: La Rev. Metallurgie, 2000, pp. 333–43.

  25. [25] L. Arnberg and R. H. Mathiesen, JOM, vol. 59, no. 8, 2007, pp. 20–26.

    Article  CAS  Google Scholar 

  26. B. Santillana: Ph.D. Thesis TU Delft, 2013.

  27. [27] M. Easton and D. Stjohn, Metall. Mater. Trans. A, vol. 36, no. 7, 2005, pp. 1911–1920.

    Article  CAS  Google Scholar 

  28. [28] Y. Meng and B. G. Thomas, Metall. Mater. Trans. B, vol 34B, 2003, pp. 707-725.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begoña Santillana.

Additional information

Manuscript submitted November 3, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santillana, B., Paruchuri, V., Kripak, V. et al. Assessment of Shell Strength During Solidification in the Mold Cracking Simulator (MCS) Test. Metall Mater Trans A 50, 142–150 (2019). https://doi.org/10.1007/s11661-018-4958-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4958-8

Navigation