Skip to main content
Log in

Phase Stability Effects on Hydrogen Embrittlement Resistance in Martensite–Reverted Austenite Steels

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Earlier studies have shown that interlath austenite in martensitic steels can enhance hydrogen embrittlement (HE) resistance. However, the improvements were limited due to microcrack nucleation and growth. A novel microstructural design approach is investigated, based on enhancing austenite stability to reduce crack nucleation and growth. Our findings from mechanical tests, X-ray diffraction, and scanning electron microscopy reveal that this strategy is successful. However, the improvements are limited due to intrinsic microstructural heterogeneity effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. Note that an \( \varepsilon \)-martensite phase that occurs is an intermediate phase that can occur during the \( \gamma \to \alpha ^{\prime} \) transformation, though it is relatively stable during deformation.[10,35,36]

  2. Comparison is made using the mean of the three \( {\text{MA}}_{\text{H}} \) samples and the single \( {\text{MA}}_{\text{CR - H}} \) sample with an equivalent time between H charging and mechanical testing, although the other \( {\text{MA}}_{\text{CR - H}} \) samples had similar mechanical properties.

  3. It was not possible to quantify this point due to inconsistencies of the voids introduced during different sample preparation. Nevertheless, there were no observations of the void clusters after observing several 20×20 m high resolution ECC images containing a large number of grains (on the order of ten thousand).

References

  1. 1 G. Yagawa, Y. Kanto, S. Yoshimura, H. Machida, and K. Shibata: Nucl. Eng. Des., 2001, vol. 207, pp. 269–86.

    Article  CAS  Google Scholar 

  2. J. Pierre, R. Francois, and P. Christophe: in Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, 2013, pp. 1–8.

  3. 3 G. Lovicu, M. Bottazzi, F.D. Aiuto, M.D.E. Sanctis, A. Dimatteo, and C. Santus: Meallurgical Mater. Trans. A, 2012, vol. 43, pp. 4075–87.

    Article  Google Scholar 

  4. 4 M. Loidl, O. Kolk, S. Veith, and T. Göbel: Materwiss. Werksttech., 2011, vol. 42, pp. 1105–10.

    Article  CAS  Google Scholar 

  5. 5 J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 7630–41.

    Article  CAS  Google Scholar 

  6. 6 M. Perrin, L. Gaillet, C. Tessier, and H. Idrissi: Corros. Sci., 2010, vol. 52, pp. 1915–26.

    Article  CAS  Google Scholar 

  7. 7 M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 4607–18.

    Article  CAS  Google Scholar 

  8. 8 M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2014, vol. 70, pp. 174–87.

    Article  CAS  Google Scholar 

  9. R.A. McCoy and W.W. Gerberich: Metall. Trans., 1973, vol. 4, pp. 539–47.

    Article  CAS  Google Scholar 

  10. 10 M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe: Acta Mater., 2014, vol. 79, pp. 268–81.

    Article  CAS  Google Scholar 

  11. 11 M.M. Wang, C.C. Tasan, D. Ponge, and D. Raabe: Acta Mater., 2016, vol. 111, pp. 262–72.

    Article  CAS  Google Scholar 

  12. 12 M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, and C.C. Tasan: Science., 2017, vol. 355, pp. 1055–7.

    Article  CAS  Google Scholar 

  13. R.A. McCoy, W.W. Gerberich, and V.F. Zackay: Metall. Trans., 1970, vol. 1, pp. 2031–34.

    Article  CAS  Google Scholar 

  14. Y.D. Park, I.S. Maroef, A. Landau, and D.L. Olson: Weld. Res., 2002, pp. 27–35.

  15. 15 M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, and D. Raabe: Acta Mater., 2015, vol. 85, pp. 216–28.

    Article  CAS  Google Scholar 

  16. M. Wang, C.C. Tasan, M. Koyama, D. Ponge, and D. Raabe: Metall. Mater. Trans. A, 2015, vol. 46A.

  17. 17 J.Y. Lee and S.M. Lee: Surf. Coatings Technol., 1986, vol. 28, pp. 301–14.

    Article  CAS  Google Scholar 

  18. 18 K.G. Solheim, J.K. Solberg, J. Walmsley, F. Rosenqvist, and T.H. Bjørnå: Eng. Fail. Anal., 2013, vol. 34, pp. 140–9.

    Article  CAS  Google Scholar 

  19. 19 J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 4085–92.

    Article  CAS  Google Scholar 

  20. 20 J. Han, J.H. Nam, and Y.K. Lee: Acta Mater., 2016, vol. 113, pp. 1–10.

    Article  CAS  Google Scholar 

  21. 21 G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.

    Article  CAS  Google Scholar 

  22. E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39, p. 2586.

    Article  CAS  Google Scholar 

  23. 23 T. Michler, C. San Marchi, J. Naumann, S. Weber, and M. Martin: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 16231–46.

    Article  CAS  Google Scholar 

  24. 24 J. Sojka, V. Vodárek, I. Schindler, C. Ly, M. Jérôme, P. Váňová, N. Ruscassier, and A. Wenglorzová: Corros. Sci., 2011, vol. 53, pp. 2575–81.

    Article  CAS  Google Scholar 

  25. 25 W.C. Luu and J.K. Wu: Corros. Sci., 1996, vol. 38, pp. 239–45.

    Article  CAS  Google Scholar 

  26. 26 P.A. Redhead: Vacuum, 1962, vol. 12, pp. 203–11.

    Article  CAS  Google Scholar 

  27. 27 M. Nagumo: Fundamentals of Hydrogen Embrittlement, Springer, Singapore, 2016.

    Book  Google Scholar 

  28. 28 J. Blaber, B. Adair, and A. Antoniou: Exp. Mech., 2015, vol. 55, pp. 1105–22.

    Article  Google Scholar 

  29. 29 A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182–9.

    Article  CAS  Google Scholar 

  30. 30 M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.

    Article  CAS  Google Scholar 

  31. 31 J.L. Zhang, C.C. Tasan, M.L. Lai, J. Zhang, and D. Raabe: J. Mater. Sci., 2015, vol. 50, pp. 5694–708.

    Article  CAS  Google Scholar 

  32. 32 R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 153–62.

    Article  CAS  Google Scholar 

  33. 33 X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 13031–40.

    Article  CAS  Google Scholar 

  34. 34 A.A. Griffith: Philos. Trans. R. Soc. london. Ser. A, 1921, vol. 221, pp. 163–98.

    Article  Google Scholar 

  35. 35 Y.S. Chun, J.S. Kim, K.T. Park, Y.K. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2012, vol. 533, pp. 87–95.

    Article  CAS  Google Scholar 

  36. 36 T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.

    Article  CAS  Google Scholar 

Download references

The authors gratefully acknowledge the use of the shared experimental facilities supported in part by the MRSEC program of the National Science foundation under the award number DMR – 1419807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Tasan.

Additional information

Manuscript submitted March 27, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cameron, B.C., Koyama, M. & Tasan, C.C. Phase Stability Effects on Hydrogen Embrittlement Resistance in Martensite–Reverted Austenite Steels. Metall Mater Trans A 50, 29–34 (2019). https://doi.org/10.1007/s11661-018-4948-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4948-x

Navigation