Characterization of the Martensitic Transformation in NiPtAl Alloy Using Digital Holographic Imaging


Surface reliefs due to phase transformations in a 56.8Ni-5.6Pt-37.6Al at. pct alloy were characterized in situ using digital holographic imaging during thermal cycling from room temperature up to 405 K (132 °C). The 3D images of the surface revealed that the austenite plates formed during heating are exactly the same for each cycle, which is not the case for the martensite plates formed during cooling. The martensite start temperature was found to vary by up to ~ 20 K from one grain to another within the same specimen. The absence of Ni3Al γ′ precipitates, due to the relatively high Al content, results in the propagation of the martensitic transformation over grains up to a millimeter in size. Bright-field optical imaging showed the formation of large martensite plates in some grains, with cracks perpendicular to these plates, upon cycling. Cracks were also observed at grain boundaries and could be related to the height variations across the grain boundaries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    N.P. Padture, M. Gell, H. Jordan, Sci., 2002, vol. 296, pp. 280-284.

    CAS  Article  Google Scholar 

  2. 2.

    P. Deb, D.H. Boone, T.F. Manley (1987) J. Vac. Sci. Technol., 5, 3366-3367.

    CAS  Article  Google Scholar 

  3. 3.

    VK Tolpygo, Clarke DR., Acta Mater., 2004, vol. 52, pp. 5115–27.

    CAS  Google Scholar 

  4. 4.

    VK Tolpygo, Clarke DR., Acta Mater., 2004, vol. 52, pp. 5129–41.

    CAS  Google Scholar 

  5. 5.

    S Dryepondt, JR Porter and D.R. Clarke, Acta Mater., 2009, vol. 57, pp. 1717-23.

    CAS  Article  Google Scholar 

  6. 6.

    S Dryepondt and D.R. Clarke, Scr. Mater., 2009, vol. 60, pp. 917-920.

    CAS  Article  Google Scholar 

  7. 7.

    R. Nutzel, E. Affeldt and M. Goken, Int. J. Fatigue., 2008, vol. 30, pp. 313–317.

    Article  Google Scholar 

  8. 8.

    D.S. Balint and J.W. Hutchinson, J. Mech. Phys. Solids., 2005, vol. 53, pp. 949-973.

    CAS  Article  Google Scholar 

  9. 9.

    Y. Zhang, J.A. Haynes, B.A. Pint, I.G. Wright, Surf. Coat. Technol., 2003, vol. 163-164, pp. 19-24.

    Article  Google Scholar 

  10. 10.

    D Pan, MW Chen, PK Wright, KJ Hemker, Acta Mater., 2003, vol. 51, pp. 2205-2217.

    CAS  Article  Google Scholar 

  11. 11.

    MW Chen, RT Ott, TC Hufnagel, P.K. Wright, KJ Hemker, Surf. Coat. Technol., 2003, vol. 163-164, pp. 25-30

    Article  Google Scholar 

  12. 12.

    MW Chen, ML Glynn, RT Ott, TC Hufnagel, KJ Hemker, Acta Mater., 2003, vol. 51, pp. 4279-4294.

    CAS  Article  Google Scholar 

  13. 13.

    B.A. Pint, S.A. Speakman, C.J. Rawn and Y. Zhang, JOM, 2006, vol. 58 (1), pp. 47-52.

    CAS  Article  Google Scholar 

  14. 14.

    S. Rosen and J.A. Goebel, Trans. TMS-AIME, 1968, vol. 242, pp. 722-724.

    CAS  Google Scholar 

  15. 15.

    J.L. Smialek, R.F. Hehemann, Metall. Trans., 1973, vol. 4, pp. 1571-1575.

    CAS  Google Scholar 

  16. 16.

    D.J. Sordelet, M.F. Besser, R.T. Ott, B.J. Zimmerman, W.D. Porter and B. Gleeson, Acta Mater., 2007, vol. 55, pp. 2433–2441.

    CAS  Article  Google Scholar 

  17. 17.

    B. Thiesing, C. J. Mann, S. Dryepondt, Appl. Opt., 2013, vol. 52 (19), pp. 4426-4432.

    CAS  Article  Google Scholar 

  18. 18.

    E.P. George and C.T. Liu, J. Mater. Res., 1990, vol. 5 (4), pp. 754-762.

    CAS  Article  Google Scholar 

  19. 19.

    R. Darolia, JOM, 1991, vol. 3, pp. 44-49.

    Article  Google Scholar 

  20. 20.

    Ph. Boullay, D. Schryvers, J.M. Ball, Acta Mater., 2003, vol. 51, pp. 1421-1436.

    CAS  Article  Google Scholar 

  21. 21.

    M. Clancy, M.J. Pomeroy, C. Dickinson, J. Alloys. Compd., 2012, vol. 523, pp. 11-15.

    CAS  Article  Google Scholar 

  22. 22.

    M. Clansy, Ph.D. Thesis, University of Limerick,

  23. 23.

    B. Gleeson, W. Wang, S. Hayashi, Mater. Sci. Forum., 2004, vol. 461–464, pp. 213-222.

    Article  Google Scholar 

  24. 24.

    R.J. Thompson, J.-C. Zhao, K.J. Hemker, Intermetallics, 2010, vol. 18, pp. 796–802.

    CAS  Article  Google Scholar 

  25. 25.

    Y.X. Cui, L. Zhen, D.Z. Yang, G.P. Bi, Q. Wang, Mater. Lett., 2001, vol. 48, pp. 121-126.

    CAS  Article  Google Scholar 

  26. 26.

    M.Z. Alam, D. Chatterjee, S.V. Kamat, V. Jayaram, D.K. Das, Mater. Sci. Eng. A, 2010, vol. 527 (26), pp. 7147-7150.

    Article  Google Scholar 

  27. 27.

    H.S. Yang and H. K. D. H. Bhadeshia, Scr. Mater., 2009, vol. 60, pp. 493–95.

    CAS  Article  Google Scholar 

  28. 28.

    V. A. Esin, V. Maurel, P. Breton, A. Koster, S. Selezneff, Acta Mater., 2016, vol. 105, 505-518

    CAS  Article  Google Scholar 

Download references


The authors wish to acknowledge T. Jordan and A. Passian for assistance with the experimental work and B. Pint, Y. Yamamoto, and M. Brady for reviewing the manuscript. This research was sponsored by the U.S. Department of Energy through the Laboratory Directed Research and Development (Seed) Program at Oak Ridge National Laboratory.

Author information



Corresponding author

Correspondence to Benjamin P. Thiesing.

Additional information

Manuscript submitted February 7, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 53596 kb)

Supplementary material 2 (MP4 17067 kb)

Supplementary material 3 (MP4 27529 kb)

Supplementary material 4 (MP4 118698 kb)

Supplementary material 5 (MP4 49565 kb)

Supplementary material 6 (MP4 50369 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thiesing, B.P., Dryepondt, S., Leonard, D. et al. Characterization of the Martensitic Transformation in NiPtAl Alloy Using Digital Holographic Imaging. Metall Mater Trans A 49, 5259–5270 (2018).

Download citation