Surface Porous Structure and Microhardness of Intermetallic NiAl Compound

  • Jianjun Gao
  • Zhilong Zhao
  • Lufeng Wei
  • Kai Cui
  • Shaoyi Wang
  • Ning Li
  • Jingying Guo
  • Sen Chen
  • Zhirong Hu
  • Yalong Liu


A porous structure on the surface of the intermetallic NiAl compound was obtained after the fibrous tungsten phase of directionally solidified NiAl-W eutectic alloys was selectively removed by pulsed polarization. Pore shape, diameter, and spacing were dependent on growth rate during directional solidification. Pore diameter and spacing decreased with increasing growth rate. Nanopores with a diameter of 220 nm and an etching depth of 45.56 μm were produced at a pulsed potential of 0.5 V and an etching duration of 72 hours. With prolonged etching, pore diameter remained unchanged and etching depth increased. The Vickers microhardness of the porous intermetallic NiAl compound (0.325 to 0.351 GPa) was lower than that of the directionally solidified NiAl-W eutectic alloys. The microhardness of the porous intermetallic NiAl compound decreased with increasing pore diameter, pore spacing, or etching depth.



This work is financially supported by the National Natural Science Foundation of China (Grant No. 51374173).


  1. 1.
    R.D. Noebe, R.R. Bowman, and M.V. Nathal: Int. Mater. Rev., 1993, vol. 38, pp. 193–232.CrossRefGoogle Scholar
  2. 2.
    B. Saeedi, A.S.R. Aghdam, and G. Gholami: Surf. Coat. Technol., 2015, vol. 276, pp. 704–13.CrossRefGoogle Scholar
  3. 3.
    D.B. Miracle: Acta Metall. Mater., 1993, vol. 41, pp. 649–84.CrossRefGoogle Scholar
  4. 4.
    E.P. George, M. Yamaguchi, K.S. Kumar, and C.T. Liu: Mater. Res., 1994, vol. 24, pp. 409–51.CrossRefGoogle Scholar
  5. 5.
    T.A. Venkatesh and D.C. Dunand: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 781–92.CrossRefGoogle Scholar
  6. 6.
    Y Chen and HM Wang: J. Alloys Compd., 2005, vol. 391(1), pp. 49–54.CrossRefGoogle Scholar
  7. 7.
    S. Milenkovic and R. Caram: Metall. Mater. Trans. A, 2014, vol. 46A, pp. 1–9.Google Scholar
  8. 8.
    H.X. Dong, Y. Jiang, Y.H. He, J. Zou, N.P. Xu, B.Y. Huang, C.T. Liu, and P.K. Liaw: Mater. Chem. Phys., 2010, vol. 122, pp. 417–23.CrossRefGoogle Scholar
  9. 9.
    E. Godlewska: Mater. Corros., 1997, vol. 48, pp. 687–99.CrossRefGoogle Scholar
  10. 10.
    H.Y. Yin, T. Yu, D.Y. Tang, X.F. Ruan, H. Zhu, and D.H. Wang: Mater. Chem. Phys., 2012, vol. 133, pp. 465–70.CrossRefGoogle Scholar
  11. 11.
    L. Wu, H.X. Dong, and Y.H. He: Chin. J. Nonferrous. Met., 2010, vol. 20, pp. 1555–65.CrossRefGoogle Scholar
  12. 12.
    B.B. Rodriguez, A. Schneider, and A.W. Hassel: J. Electrochem. Soc., 2006, vol. 153, pp. C33–36.CrossRefGoogle Scholar
  13. 13.
    B.B. Rodriguez, A.J. Smith, and A.W. Hassel: J. Electroanal. Chem., 2008, vol. 618, pp. 11–16.CrossRefGoogle Scholar
  14. 14.
    B.B. Rodriguez and A.W. Hassel: J. Electrochem. Soc., 2008, vol. 155, pp. K31–37.CrossRefGoogle Scholar
  15. 15.
    H.X. Dong, Y.H. He, Y. Jiang, L. Wu, J. Zou, N.P. Xu, B.Y. Huang, and C.T. Liu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4849–55.CrossRefGoogle Scholar
  16. 16.
    H.X. Dong, Y.H. He, J. Zou, N.P. Xu, B.Y. Huang, and C.T. Liu: J. Alloys Compd., 2010, vol. 492, pp. 219–25.CrossRefGoogle Scholar
  17. 17.
    A.W. Hassel, A.J. Smith, and S. Milenkovic: Electrochim. Acta, 2006, vol. 52, pp. 1799–1804.CrossRefGoogle Scholar
  18. 18.
    D. Frankel, S. Milenkovic, A.J. Smith, and A.W. Hasse: Electrochim. Acta, 2009, vol. 54, pp. 6015–21.CrossRefGoogle Scholar
  19. 19.
    A.W. Hassel, B.B. Rodrguez, S. Milenkovic, and A. Schneider: Electrochim. Acta, 2005, vol. 50, pp. 3033–39.CrossRefGoogle Scholar
  20. 20.
    R. Asthana, R. Tiwari, and S.N. Tewari: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2175–84.CrossRefGoogle Scholar
  21. 21.
    L. Wang, J. Shen, Y.P. Zhang, and H.Z. Fu: Mater. Sci. Eng. A, 2016, vol. 664, pp. 188–94.CrossRefGoogle Scholar
  22. 22.
    H.G. Ren, W.J. Wang, J.J. Gao, G.M. Yan, and Z.L. Zhao: Rare Met. Mater. Eng., 2016, vol. 45, pp. 222–26.Google Scholar
  23. 23.
    Z.L. Zhao, J.J. Gao, L.F. Wei, and K. Chui: Mater. Manuf. Processes, 2017, vol. 32, pp. 1817–22.CrossRefGoogle Scholar
  24. 24.
    J.F. Zhang, J. Shen, Z. Shang, L. Wang, and H.Z. Fu: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 3499–507.CrossRefGoogle Scholar
  25. 25.
    S. Milenkovic, A. Schneider, and G. Frommeyer: Intermetallics, 2011, vol. 19, pp. 342–49.CrossRefGoogle Scholar
  26. 26.
    S. Milenkovic and A.W. Hassel: Phys. Status. Solidi. A, 2009, vol. 206, pp. 455–61.CrossRefGoogle Scholar
  27. 27.
    J.J. Gao, Z.Z. Zhao, L.F. Wei, and K. Cui: J. Electrochem. Soc., 2017, vol. 9, pp. C474–80.CrossRefGoogle Scholar
  28. 28.
    K.A. Jackson and J.D. Hunt: TMS-AIME, 1996, vol. 236, pp. 1129–42.Google Scholar
  29. 29.
    G. Frommeyer, R. Rablbauer, and H.J. Schäfer: Intermetallics, 2010, vol. 18, pp. 299–305.CrossRefGoogle Scholar
  30. 30.
    A.V. Ponomareva, E.I. Isaev, Y.K. Vekilov, and I.K. Abrikosov: Phys. Revi, 2012, vol. 85, p. 144117.CrossRefGoogle Scholar
  31. 31.
    H.Z. Fu, J.J. Guo, L. Liu, and J.S. Li: Directional Solidification and Processing of Advanced Materials, Science Press, Beijing, 2008, pp. 150–61.Google Scholar
  32. 32.
    Y.H. Zhou, Z.Q. Hu, and W.Q. Jie: Solidification Technology, China Machine Press, Beijing, 1998, pp. 36–46.Google Scholar
  33. 33.
    S.D. Peteves and R. Abbaschina. Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1259–70.CrossRefGoogle Scholar
  34. 34.
    S.C. Flood and J.D. Hunt: Met. Sci., 1981, vol. 15, pp. 287–94.CrossRefGoogle Scholar
  35. 35.
    D. Li, K. Eckler, and D.M. Heriach: Acta. Mater., 1996, vol. 44, pp. 2437–43.CrossRefGoogle Scholar
  36. 36.
    F. Yilmaz and R. Elliott: J. Cryst. Growth, 1984, vol. 66, pp. 465–68.CrossRefGoogle Scholar
  37. 37.
    S. Khan and R. Elliott: J. Mater. Sci., 1996, vol. 31, pp. 3731–37.CrossRefGoogle Scholar
  38. 38.
    J.D. Cotton, M.J. Kaufman, and R.D. Noebe: Scripta Mater., 1991, vol. 25, pp. 1827–32.CrossRefGoogle Scholar
  39. 39.
    S. Milenkovic and R. Caram: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 557–65.CrossRefGoogle Scholar
  40. 40.
    J. Lapin, L. Ondrúš, and M. Nazmy: Intermetallics, 2002, vol. 10, pp. 1019–31.CrossRefGoogle Scholar
  41. 41.
    D.M. Dimiduk, P.M. Hazzledine, T.A. Parthasarathy, S. Seshagiri, and M.G. Mendiratta: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 37–47.CrossRefGoogle Scholar
  42. 42.
    N.J. Petch: J. Iron. Steel. Inst., 1953, vol. 174, pp. 25–28.Google Scholar
  43. 43.
    H. Kaya, M. Gündüz, E. Çadirli, and N. Maraşli: J. Alloy Compd., 2009, vol. 478, pp. 281–86.CrossRefGoogle Scholar
  44. 44.
    T. Liu, L.S. Luo, Y.Q. Su, L. Wang, X.Z. Li, R.R. Chen, J.J. Guo, and H.Z. Fu: J. Mater. Res., 2016, vol. 31, pp. 1–9.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Jianjun Gao
    • 1
  • Zhilong Zhao
    • 1
  • Lufeng Wei
    • 1
  • Kai Cui
    • 1
  • Shaoyi Wang
    • 1
  • Ning Li
    • 1
  • Jingying Guo
    • 1
  • Sen Chen
    • 1
  • Zhirong Hu
    • 1
  • Yalong Liu
    • 1
  1. 1.School of Mechanical EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations