Metallurgical and Materials Transactions A

, Volume 49, Issue 7, pp 2705–2720 | Cite as

Effect of Compositional Variation in TiO2-Based Flux-Cored Arc Welding Fluxes on the Thermo-physical Properties and Mechanical Behavior of a Weld Zone

  • J. B. Kim
  • T. H. Lee
  • I. Sohn


The effect of compositional variation in TiO2-based flux-cored arc welding fluxes on viscosity, wettability, and electronegativity was studied. The thermo-physical properties of the retrieved fluxes and their relationship with the mechanical properties of the weld zone, including tensile strength and micro-Vickers hardness, after welding were identified. Microstructural observation under similar welding conditions revealed significant grain coarsening at a corrected optical basicity (Λcorr) of 0.62, resulting in reduced strength and hardness due to greater heat transfer. Welding fluxes containing TiO2-based simple structural units should result in greater heat transfer due to the deficiency in complex [AlO4]5−- and [SiO4]4−-based structural units, as identified through spectroscopic analyses using fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electronegativity of the retrieved fluxes was also evaluated since higher electronegativity results in greater absorption of electrons in the arc, resulting in arc condensation towards the center direction. Consequently, deeper penetration could be obtained, where the highest electronegativity was identified to be approximately 0.62 of the corrected optical basicity. Thus, both the thermal conductivity and electronegativity of the welding fluxes were identified to determine the heat transfer phenomenon during flux-cored arc welding.



This study was supported by the Brain Korea 21 (BK21) Project of the Division of Humantronics Information Materials Grant No. 2017-11-0016 and the Ministry of Trade, Industry and Energy Grant No. 10044705.


  1. 1.
    J.E. Jin and Y.K. Lee: Mater. Sci. Eng. A, 2009, vol. 527, pp. 157-61.CrossRefGoogle Scholar
  2. 2.
    M.H. Cai H. Ding, Z.Y. Tang, H.Y. Lee, and Y.K. Lee: Steel Res. Int., 2011, vol. 82, pp. 242-8.CrossRefGoogle Scholar
  3. 3.
    S. Kou: Welding Metallurgy, Wiley, Hoboken.Google Scholar
  4. 4.
    J.H.F. Gomes, S.C. Costa, A.P. Paiva, and P.P. Balestrassi: J. Mater. Eng. Perform., 2012, vol. 21, pp. 1862-72.CrossRefGoogle Scholar
  5. 5.
    J.E. Spear: Occup. Health Saf., 2011, vol. 80, pp. 64-5.Google Scholar
  6. 6.
    J.S. Kim, Y.K. Woo, and B.Y. Lee: Journal KWJS, 2012, vol. 30, pp. 304-8.Google Scholar
  7. 7.
    D.T. Cicic, G. Amza, C. Rontescu, S. Raise, and Z. Apostolescu: Global Journal Advances in Pure & Applied Sciences, 2013, vol.1, pp. 506-12.Google Scholar
  8. 8.
    K.H. Tseng, and K.L. Chen: J. Nanosci. Nanotech., vol. 12, pp. 6359–67.Google Scholar
  9. 9.
    G. Qin, G. Wang, and Z. Zou: Trans. Nonferrous Met. Soc. Cn., 2012, vol. 22, pp. 23-9.CrossRefGoogle Scholar
  10. 10.
    D.D. Schwemmer, D.L. Olson and D.L. Williamson: Weld. J., 1979.vol. 58, p. 153.Google Scholar
  11. 11.
    S. Datta, A. Bandyopadhyay, and P.K. Pal: Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 1136-43CrossRefGoogle Scholar
  12. 12.
    Standard, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Coshohocken, 2013.Google Scholar
  13. 13.
    C.S. Smith and L. Guttman: Trans. Aime., 1953, vol. 197, pp. 81-7.Google Scholar
  14. 14.
    K.C. Mills and S. Sridhar: Ironmaking Steelmaking, 1999, vol. 26, pp. 262-8.CrossRefGoogle Scholar
  15. 15.
    S.H. Chung and I. Sohn: Int. J. Hydr. Energy., 2015, vol. 40, pp. 15893-900.CrossRefGoogle Scholar
  16. 16.
    K.H. Tseng and P.Y. Chen: Mater. Manuf. Processes, 2016, vol. 31, pp. 359-65.CrossRefGoogle Scholar
  17. 17.
    J.B. Kim and I. Sohn: J. NonCryst. Solids, 2013, vol. 379, pp. 235-43CrossRefGoogle Scholar
  18. 18.
    J.B. Kim, J.K. Choi, I.W. Han, and I. Sohn: J. NonCryst. Solids, 2016, vol. 432, pp. 218-26.CrossRefGoogle Scholar
  19. 19.
    R.E. Boni and G. Derge: JOM, 1956, vol. 8, pp. 53-9.CrossRefGoogle Scholar
  20. 20.
    J.B. Kim and I. Sohn: ISIJ Int., 2014, vol. 54, pp. 2050-8.CrossRefGoogle Scholar
  21. 21.
    F. Khodabakhshi, M. Haghshenas, H. Eskandari, and B. Koohbor: Mater. Sci. Eng. A, 2015, vol. 636, pp. 331-9.CrossRefGoogle Scholar
  22. 22.
    R. Schroeder, G. Hammes, C. Binder, and A.N. Klein: Mater. Res., 2011, vol. 14, pp. 564-8.CrossRefGoogle Scholar
  23. 23.
    A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock: Scr. Mater., 2004, vol. 50, pp. 1445-9.CrossRefGoogle Scholar
  24. 24.
    X.L. Wan, R. Wei, and K.M. Wu: Mater. Char., 2010, vol. 61, pp. 726-31.CrossRefGoogle Scholar
  25. 25.
    S.S. Babu: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 267-78.CrossRefGoogle Scholar
  26. 26.
    R.O. Scattergood and C.C. Koch: Scr. Metall. Mater., 1992, vol. 27, pp. 1195-200.CrossRefGoogle Scholar
  27. 27.
    P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia: Scr. Mater., 2012, vol. 66, pp. 785-8.CrossRefGoogle Scholar
  28. 28.
    J.Y. Park and I. Sohn: Int. J. Heat Mass Tran., 2017, vol. 109, pp. 1014-25.CrossRefGoogle Scholar
  29. 29.
    S.W. Park and I. Sohn: J. Am. Ceram. Soc., 2016, vol. 99, pp. 612-8.CrossRefGoogle Scholar
  30. 30.
    A. Nagashima: Int. J. Thermophys., 1990, vol. 11, pp. 417-32.CrossRefGoogle Scholar
  31. 31.
    K.C. Mills: ISIJ Int., 1993, vol. 33, pp. 148-55.CrossRefGoogle Scholar
  32. 32.
    D.W. Lee and W.D. Kingery: J. Am. Ceram. Soc., 1960, vol. 43, pp. 594-607.CrossRefGoogle Scholar
  33. 33.
    M. Susa, A. Kushimoto, H. Toyota, M. Hayashi, R. Endo and Y. Kobayashi: ISIJ Int., 2009, vol. 49, pp. 1722-9.CrossRefGoogle Scholar
  34. 34.
    M. Susa, A. Kushimoto, R. Endo, and Y. Kobayashi: ISIJ Int., 2011, vol. 51, pp. 1587-96.CrossRefGoogle Scholar
  35. 35.
    M. Susa, S. Kubota, M. Hayashi, and K.C. Mills: Ironmaking Steelmaking, 2001, vol. 28, pp. 390-5.CrossRefGoogle Scholar
  36. 36.
    S. Ozawa, M. Susa, T. Goto, R. Endo, and K.C. Mills: ISIJ Int., 2006, vol. 46, pp. 413-9.CrossRefGoogle Scholar
  37. 37.
    M. Susa, F. Li, and K. Nagata: Metall. Trans. B, 1992, vol. 23, pp. 331-7.CrossRefGoogle Scholar
  38. 38.
    E.J. Jung and D.J. Min: Steel Res. Int., 2012, vol. 83, pp. 705-11.CrossRefGoogle Scholar
  39. 39.
    D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley: Rev. Mod. Phys., 2009, vol. 81, p. 739–805.CrossRefGoogle Scholar
  40. 40.
    I. Sohn and D.J. Min: Steel Res. Int., 2012, vol. 83, pp. 611-30.CrossRefGoogle Scholar
  41. 41.
    B. Reynard and S.L. Webb: Eur. J. Mineral., 1998, vol. 10, pp. 49-58.CrossRefGoogle Scholar
  42. 42.
    J.Y. Park, J.G. Park, C.H. Lee, and I. Sohn: ISIJ Int., 2011, vol. 51, pp. 889-94.CrossRefGoogle Scholar
  43. 43.
    C. Le Losq, D.R. Neuville, P. Florian, G.S. Henderson, and D. Massiot: Geochim. Cosmochim. Acta, 2014, vol. 126, pp. 495-517.CrossRefGoogle Scholar
  44. 44.
    N.J. Hess, Y. Su, and M.L. Balmer: J. Phys. Chem. B, 2001, vol. 105, pp. 6805-11.CrossRefGoogle Scholar
  45. 45.
    P. McMillan and B. Piriou: J. NonCryst. Solids, 1983, vol. 55, pp. 221-42.CrossRefGoogle Scholar
  46. 46.
    G.W. Toop and C.S. Samis: Trans. AIME 1962, vol. 224, p. 878-87.Google Scholar
  47. 47.
    R. Asokamani and R. Manjula: Phys. Rev. B, 1989, vol. 39, p. 4217–21.CrossRefGoogle Scholar
  48. 48.
    L. Pauling: The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an Introduction to Modern Structural Chemistry, Cornell University Press, Ithaca, NY, 1960.Google Scholar
  49. 49.
    Reddy R.R., Y. Nazeer Ahammed, P. Abdul Azeem, K. Rama Gopal, T.V.R. Rao: J. NonCryst. Solids, 2001, vol. 286, pp. 169–80.CrossRefGoogle Scholar
  50. 50.
    P.J. Modenesi, E.R. Apolinário, and I.M. Pereira: J. Mater. Process. Technol., 2000, vol. 99, pp. 260-5.CrossRefGoogle Scholar
  51. 51.
    K.H. Dhandha and V.J. Badheka: J. Manuf. Processes, 2015, vol. 17, pp. 48-57.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.Mechanical Design EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations